cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A362984 Decimal expansion of the asymptotic mean of the abundancy index of the powerful numbers (A001694).

Original entry on oeis.org

2, 1, 4, 9, 6, 8, 6, 9, 0, 3, 0, 1, 5, 2, 6, 7, 6, 5, 1, 2, 8, 2, 1, 9, 0, 4, 2, 1, 0, 5, 1, 0, 9, 4, 1, 6, 1, 4, 5, 9, 8, 7, 6, 5, 3, 2, 7, 5, 1, 0, 0, 9, 9, 9, 8, 7, 3, 2, 7, 3, 3, 4, 3, 7, 8, 9, 7, 6, 2, 7, 1, 7, 9, 4, 0, 3, 6, 4, 2, 3, 6, 5, 7, 4, 2, 7, 4, 2, 3, 7, 7, 1, 7, 0, 2, 4, 2, 2, 8, 9, 7, 3, 8, 6, 2
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Comments

The abundancy index of a positive integer k is A000203(k)/k = A017665(k)/A017666(k).
The asymptotic mean of the abundancy index over all the positive integers is lim_{m->oo} (1/m) * Sum_{k=1..m} A000203(k)/k = Pi^2/6 = zeta(2) = 1.644934... (A013661).

Examples

			2.14968690301526765128219042105109416145987653275100999873...
		

Crossrefs

Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A240976 (squares), A245058 (even), A306633 (squarefree), A362985 (cubefull).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -3, 4, -6, 7, -7, 7, -6, 5, -3, 2, -1}, {0, 0, 0, 4, 5, 6, 0, -12, -9, -5, 0, 22}, m]; RealDigits[(2^4 + 2^2 + 2^(3/2) - 1)/(2^4 - 2)*(3^4 + 3^2 + 3^(3/2) - 1)/(3^4 - 3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat((p^8 + p^4 + p^3 - 1)/(p^8 - p^2), 1/2)

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A180114(k)/A001694(k).
Equals Product_{p prime} (p^4 + p^2 + p^(3/2) - 1)/(p^4 - p) = Product_{p prime} (1 + (p^2 + p^(3/2) + p - 1)/(p^4 - p)) (Jakimczuk and Lalín, 2022).

A362985 Decimal expansion of the asymptotic mean of the abundancy index of the cubefull numbers (A036966).

Original entry on oeis.org

2, 4, 8, 2, 1, 7, 9, 1, 9, 6, 4, 2, 2, 3, 5, 9, 5, 2, 5, 4, 6, 1, 6, 7, 6, 4, 3, 6, 7, 4, 6, 8, 7, 6, 9, 8, 5, 3, 6, 3, 6, 8, 9, 4, 0, 9, 7, 1, 9, 3, 0, 4, 6, 8, 3, 5, 4, 3, 6, 3, 9, 3, 2, 8, 1, 4, 4, 4, 2, 3, 3, 8, 8, 5, 7, 6, 7, 5, 0, 4, 6, 3, 4, 1, 1, 5, 0, 7, 3, 1, 0, 3, 9, 8, 0, 4, 4, 7, 4, 0, 3, 7, 3, 1, 0
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Examples

			2.48217919642235952546167643674687698536368940971930468354...
		

Crossrefs

Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A245058 (even), A240976 (squares), A306633 (squarefree), A362984 (powerful).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -1, -2, 3, -2, -1, 3, -2, -2, 3, -1, -2, 3, -1, -1, 1}, {0, 0, 0, -4, 0, 6, 7, 4, 9, 0, -11, -22, -26, -21, -15, 20}, m]; RealDigits[((2^5 + 2^(10/3) + 2^3 + 2^(8/3) - 1)/(2^(10/3)*(2^(5/3) + 2^(1/3) + 1)))*((3^5 + 3^(10/3) + 3^3 + 3^(8/3) - 1)/(3^(10/3)*(3^(5/3) + 3^(1/3) + 1))) * Zeta[4/3] * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    zeta(4/3) * prodeulerrat((p^15 + p^10 + p^9 + p^8 - 1)/(p^10 * (p^5 + p + 1)), 1/3)

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A362986(k)/A036966(k).
Equals zeta(4/3) * Product_{p prime} ((p^5 + p^(10/3) + p^3 + p^(8/3) - 1)/(p^(10/3) * (p^(5/3) + p^(1/3) + 1))).

A365209 The sum of divisors d of n such that gcd(d, n/d) is a 3-smooth number (A003586).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 26, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 50, 78, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A000005 at n = 25.
The number of these divisors is A365208(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, (p^(e+1)-1)/(p-1), 1 + p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1), 1 + f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) for p = 2 or 3, and a(p^e) = 1 + p^e for a prime p >= 5.
a(n) <= A000203(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) >= A034448(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) = A000203(A065331(n)) * A034448(A065330(n)).
Dirichlet g.f.: (4^s/(4^s-2)) * (9^s/(9^s-3)) * zeta(s)*zeta(s-1)/zeta(2*s-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (54/91) * zeta(2)/zeta(3) = (54/91) * A306633 = 0.812037... .

A316148 Number of non-congruent solutions of x^2+y^2 == z^2+w^2 (mod n).

Original entry on oeis.org

1, 8, 33, 96, 145, 264, 385, 896, 945, 1160, 1441, 3168, 2353, 3080, 4785, 7680, 5185, 7560, 7201, 13920, 12705, 11528, 12673, 29568, 18625, 18824, 26001, 36960, 25201, 38280, 30721, 63488, 47553, 41480, 55825, 90720, 51985, 57608, 77649, 129920, 70561, 101640, 81313
Offset: 1

Views

Author

R. J. Mathar, Jun 25 2018

Keywords

Crossrefs

Programs

  • Maple
    A316148 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                a := a*p^(2*e+1)*(p^e-1) ;
            else
                a := a*p^(2*e-1)*(p^(e+1)+p^e-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A316148(n),n=1..100) ;
  • Mathematica
    f[2, e_] :=  2^(2*e+1)*(2^e-1); f[p_, e_] := p^(3*e)+p^(3*e-1)-p^(2*e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(2*e+1)*(2^e-1), p^(3*e)+p^(3*e-1)-p^(2*e-1)));} \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(2^e) = 2^(2e+1)*(2^e-1), a(p^e) = p^(3e)+p^(3e-1)-p^(2e-1) for odd primes p.
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Dec 18 2023

A351435 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)^(k_j + 1)).

Original entry on oeis.org

1, 9, 16, 27, 36, 144, 64, 81, 64, 324, 144, 432, 196, 576, 576, 243, 324, 576, 400, 972, 1024, 1296, 576, 1296, 216, 1764, 256, 1728, 900, 5184, 1024, 729, 2304, 2916, 2304, 1728, 1444, 3600, 3136, 2916, 1764, 9216, 1936, 3888, 2304, 5184, 2304, 3888, 512, 1944, 5184, 5292, 2916
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 11 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul((i[1]+1)^(i[2]+1), i=ifactors(n)[2]):
    seq(a(n), n=1..53);  # Alois P. Heinz, Feb 11 2022
  • Mathematica
    f[p_, e_] := (p + 1)^(e + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Table[a[n], {n, 1, 53}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]++; f[k,2]++); factorback(f); \\ Michel Marcus, Feb 11 2022

Formula

a(n) = A003959(n) * A048250(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 1/(3 * Product_{p prime} (1 - p/(p^3-1))) = 1 /(3 * A065478) = 0.5787439255... . - Amiram Eldar, Nov 19 2022
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(3) (A306633). - Amiram Eldar, Dec 15 2023

A308045 Numbers k such that usigma(k) = round(zeta(2)/zeta(3)*k), where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 2, 3, 4, 35, 44, 111, 123, 1105, 1900, 2920, 12452, 17889, 34200, 65067, 716148, 14134055, 179040201, 221709100, 221743300, 221766100, 221788900, 1120968741, 1272582040, 1441454511, 7339101375
Offset: 1

Views

Author

Amiram Eldar, May 10 2019

Keywords

Comments

The unitary version of A072355.
zeta(2)/zeta(3) is the asymptotic mean of the unitary abundancy index usigma(k)/k (A306633).
a(27) > 10^10.

Examples

			35 is in the sequence since usigma(35) = 48, and (zeta(2)/zeta(3)) * 35 = 47.895... has a round value of 48.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); meanAb = Zeta[2]/Zeta[3]; Select[Range[10^6], usigma[#] == Round[meanAb*#] &]
Previous Showing 21-26 of 26 results.