A381990
Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0
The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
(11) (111) (22) (2111) (33) (2221) (44)
(1111) (11111) (222) (4111) (2222)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type are counted by
A279785.
Normal multiset partitions of this type are counted by
A381718, see
A116539.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are
A382201.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]
A384321
Numbers whose distinct prime indices are not maximally refined.
Original entry on oeis.org
5, 7, 11, 13, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119
Offset: 1
The prime indices of 25 are {3,3}, which has refinements: ((3),(1,2)) and ((1,2),(3)), so 25 is in the sequence.
The prime indices of 102 are {1,2,7}, which has refinement ((1),(2),(3,4)), so 102 is in the sequence.
The terms together with their prime indices begin:
5: {3} 39: {2,6} 73: {21}
7: {4} 41: {13} 74: {1,12}
11: {5} 43: {14} 77: {4,5}
13: {6} 46: {1,9} 79: {22}
17: {7} 47: {15} 82: {1,13}
19: {8} 49: {4,4} 83: {23}
21: {2,4} 51: {2,7} 85: {3,7}
22: {1,5} 53: {16} 86: {1,14}
23: {9} 55: {3,5} 87: {2,10}
25: {3,3} 57: {2,8} 89: {24}
26: {1,6} 58: {1,10} 91: {4,6}
29: {10} 59: {17} 93: {2,11}
31: {11} 61: {18} 94: {1,15}
33: {2,5} 62: {1,11} 95: {3,8}
34: {1,7} 65: {3,6} 97: {25}
35: {3,4} 67: {19} 101: {26}
37: {12} 69: {2,9} 102: {1,2,7}
38: {1,8} 71: {20} 103: {27}
Partitions of this type appear to be counted by
A384317.
The strict (squarefree) case appears to be
A384322, counted by
A384318.
A279790 and
A279375 count ways to choose disjoint strict partitions of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Select[Range[30],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]!={}]&]
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Factorizations of this type are counted by
A050345.
Normal multiset partitions of this type are counted by
A116539.
The MM-numbers of these multiset partitions are
A302494.
Twice-partitions of this type are counted by
A358914.
For distinct block-sums instead of blocks we have
A381992, ranked by
A382075.
For normal multisets instead of integer partitions we have
A382214, complement
A292432.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
A381634
Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 120 are {1,1,2,3}, with 3 ways:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A116540,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142,
A317143,
A318360.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]
A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
A382078
Number of integer partitions of n that cannot be partitioned into a set of sets.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0
The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
{{1},{1,2},{1,2}}
{{1},{1},{2},{1,2}}
{{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
(11) (111) (22) (2111) (33) (2221) (44)
(1111) (11111) (222) (4111) (2222)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
The MM-numbers of these multiset partitions (set of sets) are
A302494.
Twice-partitions of this type are counted by
A358914.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement
A050345.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]
A384322
Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.
Original entry on oeis.org
5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1
The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
The terms together with their prime indices begin:
5: {3} 46: {1,9} 85: {3,7}
7: {4} 47: {15} 86: {1,14}
11: {5} 51: {2,7} 87: {2,10}
13: {6} 53: {16} 89: {24}
17: {7} 55: {3,5} 91: {4,6}
19: {8} 57: {2,8} 93: {2,11}
21: {2,4} 58: {1,10} 94: {1,15}
22: {1,5} 59: {17} 95: {3,8}
23: {9} 61: {18} 97: {25}
26: {1,6} 62: {1,11} 101: {26}
29: {10} 65: {3,6} 102: {1,2,7}
31: {11} 67: {19} 103: {27}
33: {2,5} 69: {2,9} 106: {1,16}
34: {1,7} 71: {20} 107: {28}
35: {3,4} 73: {21} 109: {29}
37: {12} 74: {1,12} 111: {2,12}
38: {1,8} 77: {4,5} 113: {30}
39: {2,6} 79: {22} 114: {1,2,8}
41: {13} 82: {1,13} 115: {3,9}
43: {14} 83: {23} 118: {1,17}
Partitions of this type are counted by
A384318.
A279790 and
A279375 count ways to choose disjoint strict partitions of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]
A384318
Number of strict integer partitions of n that are not maximally refined.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 4, 4, 5, 9, 10, 13, 15, 17, 26, 29, 36, 43, 49, 57, 74, 84, 101, 118, 136, 158, 181, 219, 248, 291
Offset: 0
For y = (5,4,2) we have 4 = 3+1 so y is counted under a(11).
On the other hand, no part of z = (6,4,1) is a subset-sum of the non-parts {2,3,5}, so z is not counted under a(11).
The a(3) = 1 through a(11) = 10 strict partitions:
(3) (4) (5) (6) (7) (8) (9) (10) (11)
(4,2) (4,3) (5,3) (5,4) (6,4) (6,5)
(5,1) (5,2) (6,2) (6,3) (7,3) (7,4)
(6,1) (7,1) (7,2) (8,2) (8,3)
(8,1) (9,1) (9,2)
(5,3,2) (10,1)
(5,4,1) (5,4,2)
(6,3,1) (6,3,2)
(7,2,1) (7,3,1)
(8,2,1)
The non-strict version for at least one choice is
A383708, for none
A383710.
These partitions are ranked by
A384322.
For subsets instead of partitions we have
A384350, complement
A326080.
Cf.
A048767,
A098859,
A179822,
A239455,
A279375,
A317142,
A351293,
A382525,
A383533,
A383711,
A384391.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,30}]
A384320
Heinz numbers of integer partitions whose distinct parts are maximally refined.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 156, 160, 162, 168, 180, 182, 192, 196
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
Partitions of this type are counted by
A384392.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
A381452
Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1
The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
{{1,1,1,2}}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
For distinct block-sums instead of blocks we have
A381637, before sums
A321469.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A001970,
A002846,
A066328,
A213385,
A213427,
A299200,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]
Comments