cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A381990 Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2025

Keywords

Examples

			The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
These partitions are ranked by A381806, zeros of A381634 and A381633.
The complement is counted by A381992, ranked by A382075.
For distinct blocks we have A382078, complement A382077, unique A382079.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are A382201.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A384321 Numbers whose distinct prime indices are not maximally refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Given a partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The prime indices of 25 are {3,3}, which has refinements: ((3),(1,2)) and ((1,2),(3)), so 25 is in the sequence.
The prime indices of 102 are {1,2,7}, which has refinement ((1),(2),(3,4)), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      39: {2,6}      73: {21}
     7: {4}      41: {13}       74: {1,12}
    11: {5}      43: {14}       77: {4,5}
    13: {6}      46: {1,9}      79: {22}
    17: {7}      47: {15}       82: {1,13}
    19: {8}      49: {4,4}      83: {23}
    21: {2,4}    51: {2,7}      85: {3,7}
    22: {1,5}    53: {16}       86: {1,14}
    23: {9}      55: {3,5}      87: {2,10}
    25: {3,3}    57: {2,8}      89: {24}
    26: {1,6}    58: {1,10}     91: {4,6}
    29: {10}     59: {17}       93: {2,11}
    31: {11}     61: {18}       94: {1,15}
    33: {2,5}    62: {1,11}     95: {3,8}
    34: {1,7}    65: {3,6}      97: {25}
    35: {3,4}    67: {19}      101: {26}
    37: {12}     69: {2,9}     102: {1,2,7}
    38: {1,8}    71: {20}      103: {27}
		

Crossrefs

These appear to be positions of terms > 1 in A383706, non-disjoint A357982, non-strict A299200.
The strict complement is A383707, counted by A179009.
Partitions of this type appear to be counted by A384317.
The complement is A384320.
The strict (squarefree) case appears to be A384322, counted by A384318.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[30],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]!={}]&]

A382077 Number of integer partitions of n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240306 at a(14) = 76, A240306(14) = 77.
First differs from A381992 at a(17) = 171, A381992(17) = 170.

Examples

			For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

Factorizations of this type are counted by A050345.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Normal multiset partitions of this type are counted by A116539.
The MM-numbers of these multiset partitions are A302494.
Twice-partitions of this type are counted by A358914.
For distinct block-sums instead of blocks we have A381992, ranked by A382075.
The complement is counted by A382078, unique A382079.
These partitions are ranked by A382200, complement A293243.
For normal multisets instead of integer partitions we have A382214, complement A292432.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A381634 Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(30) = 4, A050326(30) = 5.
First differs from A339742 at a(42) = 5, A339742(42) = 4.
First differs from A381441 at a(30) = 4, A381441(30) = 5.
First differs from A381633 at a(210) = 10, A381633(210) = 12.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1 with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition con be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions with distinct block-sums are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no arrow {1,1,2} -> {4}.

Examples

			The prime indices of 120 are {1,1,2,3}, with 3 ways:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
		

Crossrefs

Without distinct block-sums we have A381078 (lower A381454), before sums A050320.
For distinct blocks instead of sums we have A381441, before sums A050326, see A358914.
Before taking sums we had A381633.
Positions of 0 are A381806.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]

A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

First differs from A050361 at a(1728) = 7, A050361(1728) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
  {{2,2,2},{1,1,1,1,1,1}}
  {{1},{2,2,2},{1,1,1,1,1}}
  {{2},{2,2},{1,1,1,1,1,1}}
  {{1,1},{2,2,2},{1,1,1,1}}
  {{1},{2},{2,2},{1,1,1,1,1}}
  {{1},{1,1},{1,1,1},{2,2,2}}
  {{2},{1,1},{2,2},{1,1,1,1}}
  {{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
  {6,6}
  {1,5,6}
  {2,4,6}
  {2,4,6}
  {1,2,4,5}
  {1,2,3,6}
  {2,2,4,4}
  {1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
		

Crossrefs

Without distinct blocks (A000688) we have A381455, lower (A355731) A381453.
More on multiset partitions into constant blocks: A006171, A279784, A295935.
Positions of terms > 1 are A046099.
Before taking sums we had A050361.
For equal instead of distinct blocks we have A362421.
For strict instead of constant blocks we have A381441, before sums A050326.
For just distinct blocks we have A381452, before sums A045778.
For distinct sums we have A381716, before sums A381635, zeros A381636.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]

A382078 Number of integer partitions of n that cannot be partitioned into a set of sets.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240309 at a(11) = 23, A240309(11) = 25.
First differs from A381990 at a(17) = 126, A381990(17) = 127.

Examples

			The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For normal multisets see A292432, A292444, A116539.
These partitions are ranked by A293243, complement A382200.
The MM-numbers of these multiset partitions (set of sets) are A302494.
Twice-partitions of this type are counted by A358914.
For distinct sums we have A381990 (ranks A381806), complement A381992 (ranks A382075).
The complement is counted by A382077, unique A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement A050345.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]

Extensions

a(19)-a(50) from Bert Dobbelaere, Mar 29 2025

A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Examples

			The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      46: {1,9}      85: {3,7}
     7: {4}      47: {15}       86: {1,14}
    11: {5}      51: {2,7}      87: {2,10}
    13: {6}      53: {16}       89: {24}
    17: {7}      55: {3,5}      91: {4,6}
    19: {8}      57: {2,8}      93: {2,11}
    21: {2,4}    58: {1,10}     94: {1,15}
    22: {1,5}    59: {17}       95: {3,8}
    23: {9}      61: {18}       97: {25}
    26: {1,6}    62: {1,11}    101: {26}
    29: {10}     65: {3,6}     102: {1,2,7}
    31: {11}     67: {19}      103: {27}
    33: {2,5}    69: {2,9}     106: {1,16}
    34: {1,7}    71: {20}      107: {28}
    35: {3,4}    73: {21}      109: {29}
    37: {12}     74: {1,12}    111: {2,12}
    38: {1,8}    77: {4,5}     113: {30}
    39: {2,6}    79: {22}      114: {1,2,8}
    41: {13}     82: {1,13}    115: {3,9}
    43: {14}     83: {23}      118: {1,17}
		

Crossrefs

The non-strict version for no choices appears to be A382912, count A383710, odd A383711.
The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533.
These are the squarefree positions of terms > 1 in A383706, see A357982, A299200.
The case of a unique choice is A383707, counted by A179009.
Partitions of this type are counted by A384318.
This is the strict/squarefree case of A384321, counted by A384317.
The case of a unique proper choice is A384390, counted by A384319, non-strict A384323.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]

A384318 Number of strict integer partitions of n that are not maximally refined.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 4, 4, 5, 9, 10, 13, 15, 17, 26, 29, 36, 43, 49, 57, 74, 84, 101, 118, 136, 158, 181, 219, 248, 291
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Comments

This is the number of strict integer partitions of n containing at least one sum of distinct non-parts.
Conjecture: Also the number of strict integer partitions of n such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each part.

Examples

			For y = (5,4,2) we have 4 = 3+1 so y is counted under a(11).
On the other hand, no part of z = (6,4,1) is a subset-sum of the non-parts {2,3,5}, so z is not counted under a(11).
The a(3) = 1 through a(11) = 10 strict partitions:
  (3)  (4)  (5)  (6)    (7)    (8)    (9)    (10)     (11)
                 (4,2)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                 (5,1)  (5,2)  (6,2)  (6,3)  (7,3)    (7,4)
                        (6,1)  (7,1)  (7,2)  (8,2)    (8,3)
                                      (8,1)  (9,1)    (9,2)
                                             (5,3,2)  (10,1)
                                             (5,4,1)  (5,4,2)
                                             (6,3,1)  (6,3,2)
                                             (7,2,1)  (7,3,1)
                                                      (8,2,1)
		

Crossrefs

The strict complement is A179009, ranks A383707.
The non-strict version for at least one choice is A383708, for none A383710.
The non-strict version is A384317, ranks A384321, complement A384392, ranks A384320.
These partitions are ranked by A384322.
For subsets instead of partitions we have A384350, complement A326080.
Cf. A357982, A383706 (disjoint), A384319, A384323 (non-strict).

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,30}]

Formula

a(n) = A000009(n) - A179009(n).

A384320 Heinz numbers of integer partitions whose distinct parts are maximally refined.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 156, 160, 162, 168, 180, 182, 192, 196
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Given a partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The squarefree case is A383707, counted by A179009.
The complement appears to be A384321, strict case A384322, counted by A384318.
Partitions of this type are counted by A384392.
A048767 is the Look-and-Say transform, fixed points A048768.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
Cf. A383706, A357982 (non-disjoint), A299200 (non-strict).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[20],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]

A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A045778 at a(24) = 4, A045778(24) = 5.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into distinct factors > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of multisets are generally not transitive. For example, we have arrows: {{1},{2},{1,2}}: {1,1,2,2} -> {1,2,3} and {{1,2},{3}}: {1,2,3} -> {3,3}, but there is no set of multisets {1,1,2,2} -> {3,3}.

Examples

			The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
  {{1,1,1,2}}
  {{1},{1,1,2}}
  {{2},{1,1,1}}
  {{1,1},{1,2}}
  {{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
		

Crossrefs

Before taking sums we had A045778.
If each block is a set we have A381441, before sums A050326.
For distinct block-sums instead of blocks we have A381637, before sums A321469.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For set systems with distinct sums (A381633) see A381634, zeros A293243.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on sets of multisets: A261049, A317776, A317775, A296118, A318286.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).
Previous Showing 11-20 of 34 results. Next