cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A330056 Number of set-systems with n vertices and no singletons or endpoints.

Original entry on oeis.org

1, 1, 1, 6, 1724, 66963208, 144115175600855641, 1329227995784915809349010517957163445, 226156424291633194186662080095093568675422295082604716043360995547325655259
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 6 set-systems:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The covering case is A330057.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054, (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ Here AS2(n,k) is A008299 (associated Stirling of 2nd kind)
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform of A330057.
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} Sum_{i=0..k-2*j} (-1)^k * binomial(n,k) * 2^(2^(n-k)-(n-k)-1) * binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) where AS2(n,k) are the associated Stirling numbers of the 2nd kind (A008299). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A368411 Number of non-isomorphic connected multiset partitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 6, 15, 50, 148, 509, 1725, 6218
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 15 multiset partitions:
  {{1},{1}}  {{1},{1,1}}    {{1},{1,1,1}}      {{1},{1,1,1,1}}
             {{1},{1},{1}}  {{1,1},{1,1}}      {{1,1},{1,1,1}}
                            {{1},{1},{1,1}}    {{1},{1},{1,1,1}}
                            {{1},{2},{1,2}}    {{1},{1,1},{1,1}}
                            {{2},{2},{1,2}}    {{1},{1},{1,2,2}}
                            {{1},{1},{1},{1}}  {{1},{1,2},{2,2}}
                                               {{1},{2},{1,2,2}}
                                               {{2},{1,2},{1,2}}
                                               {{2},{1,2},{2,2}}
                                               {{2},{2},{1,2,2}}
                                               {{3},{3},{1,2,3}}
                                               {{1},{1},{1},{1,1}}
                                               {{1},{2},{2},{1,2}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
		

Crossrefs

The case of labeled graphs is A140638, connected case of A367867.
The complement for labeled graphs is A129271, connected case of A133686.
This is the connected case of A368097.
For set-systems we have A368409, connected case of A368094, ranks A367907.
Complement set-systems: A368410, connected case of A368095, ranks A367906.
The complement is A368412, connected case of A368098, ranks A368100.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A330053 Number of non-isomorphic set-systems of weight n with at least one singleton.

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 32, 79, 193, 499, 1321, 3626, 10275, 30126, 91062, 284093, 912866, 3018825, 10261530, 35814255, 128197595, 470146011, 1764737593, 6773539331, 26561971320, 106330997834, 434195908353, 1807306022645, 7663255717310, 33079998762373
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An singleton is an edge of size 1. The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
  {1}  {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {1}{234}      {1}{2345}
               {1}{2}{3}  {1}{2}{12}    {1}{12}{13}
                          {1}{2}{13}    {1}{12}{23}
                          {1}{2}{34}    {1}{12}{34}
                          {1}{2}{3}{4}  {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A306005.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one endpoint are A330052.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A283877 = A@283877;
    A306005 = A@306005;
    a[n_] := A283877[[n + 1]] - A306005[[n + 1]];
    a /@ Range[0, 50] (* Jean-François Alcover, Feb 09 2020 *)

Formula

a(n) = A283877(n) - A306005(n). - Jean-François Alcover, Feb 09 2020

A330059 Number of set-systems with n vertices and no endpoints.

Original entry on oeis.org

1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are:
  0                 {2}{3}{12}{13}       {1}{3}{12}{13}{23}
  {1}{2}{12}        {2}{12}{13}{23}      {2}{3}{12}{13}{23}
  {1}{3}{13}        {2}{3}{12}{123}      {1}{2}{12}{23}{123}
  {2}{3}{23}        {2}{3}{13}{123}      {1}{2}{13}{23}{123}
  {12}{13}{23}      {3}{12}{13}{23}      {1}{3}{12}{13}{123}
  {1}{23}{123}      {1}{13}{23}{123}     {1}{3}{12}{23}{123}
  {2}{13}{123}      {2}{12}{13}{123}     {1}{3}{13}{23}{123}
  {3}{12}{123}      {2}{12}{23}{123}     {2}{3}{12}{13}{123}
  {12}{13}{123}     {2}{13}{23}{123}     {2}{3}{12}{23}{123}
  {12}{23}{123}     {3}{12}{13}{123}     {2}{3}{13}{23}{123}
  {13}{23}{123}     {3}{12}{23}{123}     {1}{12}{13}{23}{123}
  {1}{2}{13}{23}    {3}{13}{23}{123}     {2}{12}{13}{23}{123}
  {1}{2}{3}{123}    {12}{13}{23}{123}    {3}{12}{13}{23}{123}
  {1}{3}{12}{23}    {1}{2}{3}{12}{13}    {1}{2}{3}{12}{13}{23}
  {1}{12}{13}{23}   {1}{2}{3}{12}{23}    {1}{2}{3}{12}{13}{123}
  {1}{2}{13}{123}   {1}{2}{3}{13}{23}    {1}{2}{3}{12}{23}{123}
  {1}{2}{23}{123}   {1}{2}{12}{13}{23}   {1}{2}{3}{13}{23}{123}
  {1}{3}{12}{123}   {1}{2}{3}{12}{123}   {1}{2}{12}{13}{23}{123}
  {1}{3}{23}{123}   {1}{2}{3}{13}{123}   {1}{3}{12}{13}{23}{123}
  {1}{12}{13}{123}  {1}{2}{3}{23}{123}   {2}{3}{12}{13}{23}{123}
  {1}{12}{23}{123}  {1}{2}{12}{13}{123}  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

The case with no singletons is A330056.
The unlabeled version is A330054 (by weight) or A330124 (by vertices).
Set-systems with no singletons are A016031.
Non-isomorphic set-systems with no singletons are A306005 (by weight).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^k * binomial(n,k) * 2^(2^(n-k)-1) * Stirling2(k,j) * 2^(j*(n-k)). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A318562 Number of combinatory separations of strongly normal multisets of weight n with strongly normal parts.

Original entry on oeis.org

1, 4, 10, 32, 80, 239, 605, 1670, 4251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    strnormQ[m_]:=OrderedQ[Length/@Split[m],GreaterEqual];
    Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@strnormQ/@#[[2]]&]],{n,6}]

A318563 Number of combinatory separations of strongly normal multisets of weight n.

Original entry on oeis.org

1, 4, 10, 33, 85, 272, 730, 2197, 6133
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}]],{n,7}]

A322133 Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 8, 3, 1, 0, 7, 17, 12, 3, 1, 0, 11, 46, 45, 18, 4, 1, 0, 15, 94, 141, 76, 23, 4, 1, 0, 22, 212, 432, 333, 124, 30, 5, 1, 0, 30, 416, 1231, 1254, 622, 178, 37, 5, 1, 0, 42, 848, 3346, 4601, 2914, 1058, 252, 45, 6, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Triangle begins:
    1
    0    1
    0    2    1
    0    3    2    1
    0    5    8    3    1
    0    7   17   12    3    1
    0   11   46   45   18    4    1
    0   15   94  141   76   23    4    1
    0   22  212  432  333  124   30    5    1
    0   30  416 1231 1254  622  178   37    5    1
    0   42  848 3346 4601 2914 1058  252   45    6    1
Non-isomorphic representatives of the multiset partitions counted in row 4:
  {{1,1,1,1}}        {{1,1,2,2}}      {{1,2,3,3}}    {{1,2,3,4}}
  {{1},{1,1,1}}      {{1,2,2,2}}      {{1,3},{2,3}}
  {{1,1},{1,1}}      {{1},{1,2,2}}    {{3},{1,2,3}}
  {{1},{1},{1,1}}    {{1,2},{1,2}}
  {{1},{1},{1},{1}}  {{1,2},{2,2}}
                     {{2},{1,2,2}}
                     {{1},{2},{1,2}}
                     {{2},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ Needs G(m,n) defined in A317533 (faster PARI).
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 15 2024

A330057 Number of set-systems covering n vertices with no singletons or endpoints.

Original entry on oeis.org

1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 5 set-systems:
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The non-covering version is A330056.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054 (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ here b(n) is A330056(n).
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform is A330056.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A334550 Triangle read by rows: T(n,k) is the number of binary matrices with n ones, k columns and no zero rows or columns, up to permutations of rows and columns.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 5, 5, 5, 1, 5, 12, 9, 7, 1, 9, 23, 29, 17, 11, 1, 9, 39, 62, 57, 28, 15, 1, 14, 63, 147, 154, 110, 47, 22, 1, 14, 102, 278, 409, 329, 194, 73, 30, 1, 20, 150, 568, 991, 1023, 664, 335, 114, 42, 1, 20, 221, 1020, 2334, 2844, 2267, 1243, 549, 170, 56
Offset: 1

Views

Author

Andrew Howroyd, Jul 03 2020

Keywords

Comments

T(n,k) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts.

Examples

			Triangle begins:
  1;
  1,  2;
  1,  2,  3;
  1,  5,  5,   5;
  1,  5, 12,   9,   7;
  1,  9, 23,  29,  17,  11;
  1,  9, 39,  62,  57,  28, 15;
  1, 14, 63, 147, 154, 110, 47, 22;
  ...
The T(4,3) = 5 matrices are:
  [1 0 0]   [1 0 0]   [1 1 0]   [1 1 1]   [1 1 0]
  [1 0 0]   [1 0 0]   [1 0 0]   [1 0 0]   [1 0 1]
  [0 1 0]   [0 1 1]   [0 0 1]
  [0 0 1]
The T(4,3) = 5 the set multipartitions are:
  {{1,2}, {3}, {4}},
  {{1,2}, {3}, {3}},
  {{1,2}, {1}, {3}},
  {{1,2}, {1}, {1}},
  {{1,2}, {1}, {2}}.
		

Crossrefs

Row sums are A049311.
Main diagonal is A000041.

Programs

  • PARI
    \\ See A321609 for definition of M.
    T(n, k)={M(k, n, n) - M(k-1, n, n)}
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print)
    
  • PARI
    \\ Faster version.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, n)={prod(j=1, #q, (1+x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))}
    G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!}
    A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))}
    { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) }
Previous Showing 51-60 of 72 results. Next