cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A318449 Numerators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A001511, A318450 (denominators).

Programs

  • Mathematica
    a1511[n_] := IntegerExponent[2n, 2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 65537;
    A001511(n) = 1+valuation(n,2);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
    A318449(n) = numerator(v318449_51[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318449(k) / A318450(k) ~ n * sqrt(2/(Pi*log(n))) * (1 + (1 - gamma/2 + log(2)/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025

A318664 Numerators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.

Original entry on oeis.org

1, 1, 5, 1, 5, -1, 7, 3, -1, -1, 10, 3, 14, -1, -7, 5, 33, 59, 37, 9, -10, -1, 43, -1, -1, -1, 181, 13, 57, 89, 61, 15, -29, -1, -45, 31, 67, -1, -41, 1, 37, 129, 81, 11, 301, -1, 89, 21, 1, 26, -97, 10, 50, -93, -47, -5, -109, -1, 107, -33, 115, -1, 411, 15, -43, 201, 64, 33, -127, 56, 67, 181, 69, -1, 283, 35, -31, 255, 151, 7
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2018

Keywords

Crossrefs

Cf. A064664, A304526, A304527, A305293, A305294, A318665 (denominators).
Cf. also A317929, A317930.

Programs

  • PARI
    v064413 = readvec("b064413_upto65539_terms_only.txt"); \\ From b-file of A064413 prepared beforehand.
    A064413(n) = v064413[n];
    m064664 = Map();
    for(n=1,65539,mapput(m064664,A064413(n),n));
    A064664(n) = mapget(m064664,n);
    up_to = (2^14);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318664_65 = DirSqrt(vector(up_to, n, A064664(n)));
    A318664(n) = numerator(v318664_65[n]);
    A318665(n) = denominator(v318664_65[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064664(n) - Sum_{d|n, d>1, d 1.
For n >= 2, a(2*A000040(n)) = -1.

A318665 Denominators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 8, 2, 1, 2, 1, 2, 1, 1, 2, 8, 2, 2, 1, 2, 2, 2, 2, 2, 16, 2, 2, 4, 2, 2, 2, 2, 2, 8, 2, 2, 2, 1, 1, 4, 2, 1, 8, 2, 2, 2, 2, 1, 4, 1, 1, 16, 2, 2, 4, 2, 2, 4, 2, 2, 8, 1, 1, 4, 1, 2, 4, 1, 1, 8, 1, 2, 4, 2, 1, 4, 2, 1, 128, 2, 1, 4, 2, 2, 4, 1, 2, 16, 2, 2, 4, 2, 1, 4, 1, 1, 2, 8, 2, 4, 2, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2018

Keywords

Crossrefs

Cf. A064664, A304526, A304527, A318664 (numerators).

Programs

  • PARI
    v064413 = readvec("b064413_upto65539_terms_only.txt"); \\ From b-file of A064413 prepared previously.
    A064413(n) = v064413[n];
    m064664 = Map();
    for(n=1,65539,mapput(m064664,A064413(n),n));
    A064664(n) = mapget(m064664,n);
    up_to = (2^14);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318664_65 = DirSqrt(vector(up_to, n, A064664(n)));
    A318664(n) = numerator(v318664_65[n]);
    A318665(n) = denominator(v318664_65[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A064664(n) - Sum_{d|n, d>1, d 1.

A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Not multiplicative because A318317 contains zeros.
Differs from A317926 at n = 200, 400, 600, 800, 900, 1200, 1400, 1600, 1800, 2200, 2400, 2700, 2800, 3200, 3600, 3800, 4050, 4200, 4400, 4600, 4800, 4900, 5200, ..., which seem to be a subsequence of positions of zeros in A318317.
Here a(200) = 1, while A317926(200) = 2.

Crossrefs

Cf. A173557, A318317 (numerators).
Cf. also A317926.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Denominator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(nA173557)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318318(n) = denominator(v318317_18[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.

A318323 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 35, 1, 5, 1, 5, 2, 2, 1, 4, 3, 2, 5, 5, 1, 9, 1, 63, 2, 2, 2, 35, 1, 2, 2, 4, 1, 9, 1, 5, 5, 2, 1, 55, 3, 5, 2, 5, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 5, 231, 2, 9, 1, 5, 2, 9, 1, 43, 1, 2, 5, 5, 2, 9, 1, 55, 35, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 5, 2, 2, 2, 49, 1, 5, 5, 35, 1, 9, 1, 4, 9
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

The first 2^20 terms are positive.

Crossrefs

Cf. A046523, A318324 (gives the denominators).

Programs

  • PARI
    up_to = 16384;
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318323_24 = DirSqrt(vector(up_to, n, A046523(n)));
    A318323(n) = numerator(v318323_24[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d 1.

A318324 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A046523, A318323 (numerators).

Programs

  • PARI
    up_to = 16384;
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318323_24 = DirSqrt(vector(up_to, n, A046523(n)));
    A318324(n) = denominator(v318323_24[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d 1.

A318444 Numerators of the sequence whose Dirichlet convolution with itself yields A057660(n) = Sum_{k=1..n} n/gcd(n,k).

Original entry on oeis.org

1, 3, 7, 35, 21, 21, 43, 239, 195, 63, 111, 245, 157, 129, 147, 6851, 273, 585, 343, 735, 301, 333, 507, 1673, 1643, 471, 3011, 1505, 813, 441, 931, 50141, 777, 819, 903, 6825, 1333, 1029, 1099, 5019, 1641, 903, 1807, 3885, 4095, 1521, 2163, 47957, 6555, 4929, 1911, 5495, 2757, 9033, 2331, 10277, 2401, 2439, 3423
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

Because A057660 contains only odd values, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.
General formula: if k >= 0, m > 0, and the Dirichlet generating function is zeta(s-k)^m * f(s), where f(s) has all possible poles at points less than k+1, then Sum_{j=1..n} a(j) ~ n^(k+1) * log(n)^(m-1) * f(k+1) / ((k+1) * Gamma(m)) * (1 + (m-1)*(m*gamma - 1/(k+1) + f'(k+1)/f(k+1)) / log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function. - Vaclav Kotesovec, May 10 2025

Crossrefs

Cf. A057660, A046644 (denominators).
Cf. also A318443.

Programs

  • Mathematica
    a57660[n_] := DivisorSigma[2, n^2]/DivisorSigma[1, n^2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a57660[n] - Sum[f[d]*f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 60}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A057660(n) = sumdivmult(n, d, eulerphi(d)*d); \\ From A057660
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318444aux = DirSqrt(vector(up_to, n, A057660(n)));
    A318444(n) = numerator(v318444aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-p*X)/((1-p^2*X)*(1-X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057660(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318444(k) / A046644(k) ~ n^3 * Pi^(-3/2) * sqrt(2*zeta(3)/(3*log(n))) * (1 + (1/3 - gamma/2 + 3*zeta'(2)/Pi^2 - zeta'(3)/(2*zeta(3))) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025

A318497 Numerators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

No zeros among the first 2^20 terms. This is most probably multiplicative, like A318498.

Crossrefs

Cf. A061389, A318314 (denominators).

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.

A346103 Numerators of sequence whose Dirichlet convolution with itself yields A342920.

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 57, 47, 3, 1, 19, 1, 3, 11, 747, 1, 139, 1, 19, 11, 3, 1, 319, 199, 3, 81, 19, 1, 231, 1, -265, 11, 3, 251, 873, 1, 3, 11, 191, 1, 79, 1, 19, 299, 3, 1, -157, 5943, 595, 11, 19, 1, 151, 187, 31, 11, 3, 1, 269, 1, 3, 507, -957, 527, 31, 1, 19, 11, 223, 1, 18787, 1, 3, 8915, 19, 483, 31, 1, 2147, 19355
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2021

Keywords

Crossrefs

Cf. A046644 (gives the denominators).

Programs

  • PARI
    up_to = 2310;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A342920(n) = A342002(A108951(n));
    vA346103aux = DirSqrt(vector(up_to, n, A342920(n)));
    A346103(n) = numerator(vA346103aux[n]);
Previous Showing 21-29 of 29 results.