A381718
Number of normal multiset partitions of weight n into sets with distinct sums.
Original entry on oeis.org
1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0
The a(1) = 1 through a(3) = 6 multiset partitions:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,2}}
{{2},{1,3}}
{{1},{2},{3}}
The a(4) = 23 factorizations:
2*3*6 5*30 3*30 2*30 210
10*15 6*15 6*10 2*105
2*5*15 2*3*15 2*3*10 3*70
3*5*10 5*42
7*30
6*35
10*21
2*3*35
2*5*21
2*7*15
3*5*14
2*3*5*7
Without distinct sums we have
A116540 (normal set multipartitions).
Twice-partitions of this type are counted by
A279785.
Without strict blocks we have
A326519.
Factorizations of this type are counted by
A381633.
For constant instead of strict blocks we have
A382203.
For distinct sizes instead of sums we have
A382428, non-strict blocks
A326517.
For equal instead of distinct block-sums we have
A382429, non-strict blocks
A326518.
Cf.
A000110,
A007716,
A050320,
A255903,
A275780,
A317532,
A317583,
A321469,
A381635,
A382204,
A382214,
A382216.
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
A381806
Numbers that cannot be written as a product of squarefree numbers with distinct sums of prime indices.
Original entry on oeis.org
4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1
There are 4 factorizations of 18000 into squarefree numbers:
(2*2*3*5*10*30)
(2*2*5*6*10*15)
(2*2*10*15*30)
(2*5*6*10*30)
but none of these has all distinct sums of prime indices, so 18000 is in the sequence.
Strongly normal multisets of this type are counted by
A292444.
For more on set multipartitions with distinct sums see
A279785,
A381718.
A003963 gives product of prime indices.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sqfics[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfics[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]
Select[Range[nn],Length[Select[sqfics[#],UnsameQ@@hwt/@#&]]==0&]
A381992
Number of integer partitions of n that can be partitioned into sets with distinct sums.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0
There are 6 ways to partition (3,2,2,1) into sets:
{{2},{1,2,3}}
{{1,2},{2,3}}
{{1},{2},{2,3}}
{{2},{2},{1,3}}
{{2},{3},{1,2}}
{{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
{{2},{1,2,3}}
{{1,2},{2,3}}
{{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Twice-partitions of this type are counted by
A279785.
Multiset partitions of this type are counted by
A381633, zeros of
A381634.
Normal multiset partitions of this type are counted by
A381718, see
A116539.
These partitions are ranked by
A382075.
For distinct blocks instead of sums we have
A382077, complement
A382078.
For a unique choice we have
A382079.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]
A381078
Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with set multipartitions:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
{{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
For distinct blocks we have
A381441.
For distinct block-sums we have
A381634.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A025487,
A066328,
A213242,
A213385,
A213427,
A299201,
A299202,
A300385.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
A321912
Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.
Original entry on oeis.org
1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 1, 3, 6, 0, 0, 0, 0, 1, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 2, 1, 5, 12, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 0, 0, 1, 5, 2, 12, 30, 0, 0, 0, 2, 1, 7, 20, 0, 1, 3, 12, 7, 27, 60, 1, 5
Offset: 1
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 1
(11): 1 2
.
(3): 1
(21): 1 3
(111): 1 3 6
.
(4): 1
(22): 1 2 6
(31): 1 4
(211): 2 1 5 12
(1111): 1 6 4 12 24
.
(5): 1
(41): 1 5
(32): 1 3 10
(221): 1 5 2 12 30
(311): 2 1 7 20
(2111): 1 3 12 7 27 60
(11111): 1 5 10 30 20 60 20
For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111).
This is a regrouping of the triangle
A321742.
Cf.
A005651,
A008480,
A056239,
A124794,
A124795,
A215366,
A318284,
A318360,
A319191,
A319193,
A321854,
A321738,
A321913-
A321935.
A318286
Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 2, 5, 5, 5, 3, 9, 4, 7, 9, 15, 5, 18, 6, 16, 14, 10, 8, 31, 17, 14, 40, 25, 10, 34, 12, 52, 21, 19, 27, 70, 15, 25, 31, 59, 18, 57, 22, 38, 80, 33, 27, 120, 46, 67, 44, 56, 32, 172, 42, 100, 61, 43, 38, 141, 46, 55, 143, 203, 64, 91, 54, 80
Offset: 1
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
Table[Length[strfacs[Times@@Prime/@nrmptn[n]]],{n,60}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 18 2018
A381990
Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0
The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
(11) (111) (22) (2111) (33) (2221) (44)
(1111) (11111) (222) (4111) (2222)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type are counted by
A279785.
Normal multiset partitions of this type are counted by
A381718, see
A116539.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are
A382201.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]
A381870
Numbers whose prime indices have a unique multiset partition into sets with distinct sums.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1
For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
Normal multiset partitions of this type are counted by
A381718, see
A279785.
For constant instead of strict blocks we have
A381991, ones in
A381635.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A321469 counts factorizations with distinct sums of prime indices, ones
A166684.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Factorizations of this type are counted by
A050345.
Normal multiset partitions of this type are counted by
A116539.
The MM-numbers of these multiset partitions are
A302494.
Twice-partitions of this type are counted by
A358914.
For distinct block-sums instead of blocks we have
A381992, ranked by
A382075.
For normal multisets instead of integer partitions we have
A382214, complement
A292432.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
A381634
Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 120 are {1,1,2,3}, with 3 ways:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A116540,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142,
A317143,
A318360.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]
Comments