cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A318390 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join {{1,...,n}} and meet of length k.

Original entry on oeis.org

1, 1, 2, 1, 6, 8, 1, 14, 48, 56, 1, 30, 200, 560, 552, 1, 62, 720, 3640, 8280, 7202, 1, 126, 2408, 19600, 77280, 151242, 118456, 1, 254, 7728, 95256, 579600, 1915732, 3316768, 2369922, 1, 510, 24200, 435120, 3836952, 19056492, 54726672, 85317192, 56230544, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,3) = 8 pairs of set partitions:
  {{1},{2},{3}}  {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}
   {{1},{2,3}}  {{1,3},{2}}
   {{1,2},{3}}  {{1},{2,3}}
   {{1,2},{3}}  {{1,3},{2}}
   {{1,3},{2}}  {{1},{2,3}}
   {{1,3},{2}}  {{1,2},{3}}
    {{1,2,3}}  {{1},{2},{3}}
Triangle begins:
    1
    1    2
    1    6    8
    1   14   48   56
    1   30  200  560  552
    1   62  720 3640 8280 7202
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==1]&]],{n,6},{k,n}]

Formula

T(n,k) = S(n,k) * A181939(k) where S = A008277.

A345907 Triangle giving the main antidiagonals of the matrices counting integer compositions by length and alternating sum (A345197).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 0, 4, 3, 1, 1, 0, 0, 3, 6, 4, 1, 1, 0, 0, 6, 9, 8, 5, 1, 1, 0, 0, 0, 18, 18, 10, 6, 1, 1, 0, 0, 0, 10, 36, 30, 12, 7, 1, 1, 0, 0, 0, 20, 40, 60, 45, 14, 8, 1, 1, 0, 0, 0, 0, 80, 100, 90, 63, 16, 9, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
Problem: What are the column sums? They appear to match A239201, but it is not clear why.

Examples

			Triangle begins:
   1
   1   1
   0   1   1
   0   1   1   1
   0   2   2   1   1
   0   0   4   3   1   1
   0   0   3   6   4   1   1
   0   0   6   9   8   5   1   1
   0   0   0  18  18  10   6   1   1
   0   0   0  10  36  30  12   7   1   1
   0   0   0  20  40  60  45  14   8   1   1
   0   0   0   0  80 100  90  63  16   9   1   1
   0   0   0   0  35 200 200 126  84  18  10   1   1
   0   0   0   0  70 175 400 350 168 108  20  11   1   1
   0   0   0   0   0 350 525 700 560 216 135  22  12   1   1
		

Crossrefs

Row sums are A163493.
Rows are the antidiagonals of the matrices given by A345197.
The main diagonals of A345197 are A346632, with sums A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{n-k}],k==(n+ats[#])/2-1&]],{k,0,n-1}],{n,0,15}]

A318399 Number of triples of set partitions of {1,...,n} with meet {{1},...,{n}} and join {{1,...,n}}.

Original entry on oeis.org

1, 6, 84, 2226, 93246, 5616492, 459173406, 48933260388, 6595445513412, 1098326915060730, 221772386369110242, 53460963703982862534, 15185890964240671486740, 5026315912246843181692776, 1919721040169845172603949966, 838872819016448052585038291124
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 6 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    nn=20;
    Table[n!*SeriesCoefficient[Log[1+Sum[x^k/k!*Sum[StirlingS1[k,i]*BellB[i]^3,{i,0,k}],{k,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A318398.

A346632 Triangle read by rows giving the main diagonals of the matrices counting integer compositions by length and alternating sum (A345197).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 6, 6, 0, 0, 0, 1, 2, 9, 12, 0, 0, 0, 0, 1, 2, 12, 18, 10, 0, 0, 0, 0, 1, 2, 15, 24, 30, 20, 0, 0, 0, 0, 1, 2, 18, 30, 60, 60, 0, 0, 0, 0, 0, 1, 2, 21, 36, 100, 120, 35, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			Triangle begins:
   1
   0   0
   0   1   0
   0   1   2   0
   0   1   2   0   0
   0   1   2   3   0   0
   0   1   2   6   6   0   0
   0   1   2   9  12   0   0   0
   0   1   2  12  18  10   0   0   0
   0   1   2  15  24  30  20   0   0   0
   0   1   2  18  30  60  60   0   0   0   0
   0   1   2  21  36 100 120  35   0   0   0   0
   0   1   2  24  42 150 200 140  70   0   0   0   0
   0   1   2  27  48 210 300 350 280   0   0   0   0   0
   0   1   2  30  54 280 420 700 700 126   0   0   0   0   0
		

Crossrefs

The first nonzero element in each column appears to be A001405.
These are the diagonals of the matrices given by A345197.
Antidiagonals of the same matrices are A345907.
Row sums are A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],k==(n+ats[#])/2&]],{k,n}],{n,0,15}]

A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.

Original entry on oeis.org

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461, 157768581675, 6167103354744, 268758895112072, 12961171404183498, 687270616305277589, 39843719438374998543, 2512873126513271758171, 171643113190082528007702, 12647168303374365311984284
Offset: 0

Views

Author

David Pasino, Dec 06 2008, Dec 08 2008

Keywords

Examples

			From _Gus Wiseman_, Dec 09 2018: (Start)
The a(3) = 7 unordered pairs:
  {{1},{2},{3}}| {{1,2,3}}
   {{1},{2,3}} |{{1,2},{3}}
   {{1},{2,3}} |{{1,3},{2}}
   {{1,2},{3}} |{{1,3},{2}}
   {{1},{2,3}} | {{1,2,3}}
   {{1,2},{3}} | {{1,2,3}}
   {{1,3},{2}} | {{1,2,3}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*binomial(combinat[bell](k),2)*
            add(Stirling2(n-k,j)*(-1)^j, j=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 27 2018
  • Mathematica
    Array[Sum[Binomial[#, k] Sum[(-1)^j*StirlingS2[# - k, j], {j, 0, # - k}] Binomial[BellB@ k, 2], {k, 0, #}] &, 20, 0] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a000110(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
    a(n) = sum(k=0, n, binomial(n,k) * sum(j=0, n-k, (-1)^j*stirling(n-k,j, 2) * binomial(a000110(k),2))); \\ Michel Marcus, May 27 2018

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (Sum_{j=0..n-k} (-1)^j*A048993(n-k,j)) * binomial(A000110(k),2).
That is, summed on k from 0 to n, the number of k-element subsets of an n-element set, times the alternating sum of row n-k of Stirling2 numbers starting with +S(n-k, 0), times the number of pairs of partitions of k elements.
Obtained by inverting (binomial(A000110(n), 2)) = (Sum_{k=0..n} binomial(n,k)*A000110(n-k)*a(k)), which in turn is gotten by considering that a pair of conjoint partitions is gotten by choosing a partition of a subset and then choosing a pair of disjoint partitions of the complement.

A318398 Number of triples of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.

Original entry on oeis.org

1, 7, 103, 2707, 110857, 6517129, 521167549, 54510591469, 7235648605909, 1190181847444189, 237953165658759679, 56905537750421669449, 16059682765076576965879, 5287171379685771887014489, 2010360123437921314268936809, 875173620070717892287441139989
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}} {{1},{2}}
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n,k]*BellB[k]^3,{k,0,n}],{n,10}]

Formula

a(n) = Sum_{k = 0..n} s(n,k)*B(k)^3 where s = A048994 and B = A000110.

A318815 Number of triples of set partitions of {1,2,...,n} whose join is {{1,2,...,n}}.

Original entry on oeis.org

1, 7, 103, 2773, 117697, 7167619, 590978941, 63385879261, 8584707943381, 1434654097736101, 290409845948305321, 70125579500764771585, 19940633217840575968969, 6603748351832744611210549, 2522614472277243822293033719, 1102166886808604068546379343289
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
   {{1,2}}   {{1,2}}   {{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[n!*SeriesCoefficient[Log[1+Sum[BellB[n]^3*x^n/n!,{n,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A000110(n)^3.
a(n) = Bell(n)^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Bell(n-k)^3 * k * a(k). - Ilya Gutkovskiy, Jan 17 2020

A318816 Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			Tetrangle begins:
  1   2     3        5             7
      2 2   4 4     14 14         28 28
            3 4 3    9 20  9      33 80 33
                     5 14  9  5   16 68 52 16
                                   7 28 33 16  7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
  {{{1}},{{1},{1,1}}}  {{{1,1}},{{1},{1}}}
  {{{1}},{{1},{1,2}}}  {{{1,1}},{{1},{2}}}
  {{{1}},{{1},{2,2}}}  {{{1,1}},{{2},{2}}}
  {{{1}},{{1},{2,3}}}  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,1}}}  {{{1,2}},{{1},{1}}}
  {{{1}},{{2},{1,2}}}  {{{1,2}},{{1},{2}}}
  {{{1}},{{2},{1,3}}}  {{{1,2}},{{1},{3}}}
  {{{1}},{{2},{3,4}}}  {{{1,2}},{{3},{4}}}
  {{{2}},{{1},{1,1}}}  {{{2,3}},{{1},{1}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
		

Crossrefs

A320768 Number of set partitions of the set of nonempty subsets of {1,...,n} where each block's elements are pairwise disjoint sets.

Original entry on oeis.org

1, 1, 2, 15, 2420, 333947200
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Examples

			The a(3) = 15 set partitions:
  {{{1}},{{2}},{{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2}},{{3},{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{1,3}},{{3}},{{1,2}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{1,3}},{{3},{1,2}},{{2,3}},{{1,2,3}}}
  {{{1},{2}},{{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{2}},{{3},{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{3}},{{2}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{3}},{{2},{1,3}},{{1,2}},{{2,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2}},{{3}},{{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2}},{{3},{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{3}},{{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{1,3}},{{3}},{{1,2}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{1,3}},{{3},{1,2}},{{1,2,3}}}
  {{{1},{2},{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    sps[set_]:=spsu[Rest[Subsets[set]],set];
    Table[Length[spsu[Sort/@Union@@sps/@Rest[Subsets[Range[n]]],Rest[Subsets[Range[n]]]]],{n,4}]

Extensions

a(5) from, and definition clarified by Christian Sievers, Nov 30 2024

A318395 Number of nonnegative integer matrices with values summing to n, up to transposition and permutation of rows and columns.

Original entry on oeis.org

1, 1, 3, 7, 21, 54, 167, 491, 1586, 5132, 17442, 60399, 216172, 790436, 2965333, 11365813, 44536775, 178107679, 726716229, 3022464373, 12807206008, 55253891494, 242585471236, 1083255591604, 4917631017573, 22685090928596, 106291554085987, 505653658171936, 2441383079595849
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Comments

Also the number of non-isomorphic pairs of set partitions of {1,...,n}.

Examples

			Inequivalent representatives of the a(3) = 7 nonnegative integer matrices:
  [3]   [1 2]   [1 1 1]   [1 0]   [0 1]   [1 0 0]   [1 0 0]
                          [0 2]   [1 1]   [0 1 1]   [0 1 0]
                                                    [0 0 1]
Non-isomorphic representatives of the a(3) = 7 pairs of set partitions:
    {{1,2,3}}     {{1,2,3}}
    {{1,2,3}}    {{1},{2,3}}
    {{1,2,3}}   {{1},{2},{3}}
   {{1},{2,3}}   {{1},{2,3}}
   {{1},{2,3}}   {{2},{1,3}}
   {{1},{2,3}}  {{1},{2},{3}}
  {{1},{2},{3}} {{1},{2},{3}}
		

Crossrefs

Formula

a(n) = (A007716(n) + A316983(n))/2. - Andrew Howroyd, Sep 03 2018

Extensions

a(6)-a(25) from Andrew Howroyd, Sep 03 2018
Terms a(26) and beyond from Andrew Howroyd, Mar 29 2020
Previous Showing 11-20 of 20 results.