cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A379841 Numbers that are the sum + product of some set of positive integers > 1. Positions of nonzeros in A379679.

Original entry on oeis.org

1, 4, 6, 8, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jan 09 2025

Keywords

Examples

			For sum + product = 14 we have two possibilities: {7} or {2,4}; so 14 is in the sequence.
		

Crossrefs

The version allowing 1's is A326178.
Positions of nonzeros in A379679.
The complement is A379680.
The non-strict version is A379839, complement A379670.
For unique (instead of some) we have A379842.
Arrays counting multisets by sum and product: A379666, A379671, A379678.
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722, see A111133
A002865 counts partitions into parts > 1, strict A025147.
A318950 counts factorizations by sum.
A379681 gives sum + product of prime indices.

Programs

  • Mathematica
    nn=100;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Intersection[Range[nn],Total[#]+Times@@#&/@Join@@Array[strfacs,nn]]

A379842 Numbers that are the sum + product of a unique set of positive integers > 1. Positions of 1 in A379679.

Original entry on oeis.org

1, 4, 6, 8, 10, 11, 12, 16, 17, 18, 19, 22, 24, 27, 28, 30, 31, 33, 36, 42, 43, 46, 48, 49, 52, 58, 61, 63, 66, 67, 70, 73, 85, 88, 91, 97, 100, 102, 105, 108, 115, 126, 130, 141, 145, 147, 148, 162, 171, 178, 192, 205, 211, 213, 226, 262, 277, 283, 288, 291
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2025

Keywords

Examples

			For sum + product = 29 we have two possibilities: {2,9} and {4,5}, so 29 is not in the sequence.
For sum + product = 33 we have only {2,3,4}, so 33 is in the sequence.
		

Crossrefs

Positions of 1 in A379679, see A379843.
For at least one multiset we have A379839, complement A379670.
For multisets instead of sets we have A379840.
For at least one (instead of exactly one) we have A379841, complement A379680.
Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667
- partitions without ones: A379668, antidiagonal sums A379669
- strict partitions: A379671, antidiagonal sums A379672
- strict partitions without ones: A379678, antidiagonal sums A379679.
A000041 counts integer partitions, strict A000009.
A001055 counts integer factorizations, strict A045778.
A002865 counts partitions into parts > 1, strict A025147.
A318950 counts factorizations by sum.
A326622 counts factorizations with integer mean, strict A328966.

Programs

  • Mathematica
    nn=100;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Length[Select[Join@@Array[strfacs,n],Total[#]+Times@@#==n&]],{n,nn}],1]

A380219 Number of integer partitions of n whose product is a proper multiple of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 18, 0, 9, 21, 75, 0, 109, 0, 146, 83, 43, 0, 730, 224, 82, 806, 722, 0, 1782, 0, 4254, 733, 258, 1923, 9558, 0, 435, 1875, 16395, 0, 14625, 0, 9857, 33053, 1150, 0, 102070, 19391, 57326, 10157, 30702, 0, 207699, 47925, 200645
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2025

Keywords

Examples

			The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12).
The a(8) = 3 through a(14) = 9 partitions:
  (44)    (63)    (532)   .  (66)       .  (743)
  (422)   (333)   (541)      (543)         (752)
  (2222)  (3321)  (5221)     (642)         (761)
                             (831)         (7322)
                             (4332)        (7421)
                             (4431)        (72221)
                             (5322)        (73211)
                             (6222)        (74111)
                             (6321)        (722111)
                             (6411)
                             (33222)
                             (43221)
                             (43311)
                             (62211)
                             (322221)
                             (332211)
                             (432111)
                             (3222111)
		

Crossrefs

The non-proper version is A057568, case of equality A001055.
The case of strict partitions is A379733 - 1.
The case of partitions without 1's is A379734 - 1.
These partitions are ranked by A380216.
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&&UnsameQ[Times@@#,n]&]],{n,30}]
  • PARI
    a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ Michel Marcus, Jan 22 2025

Formula

a(n) = A057568(n) - A001055(n).

A379839 Numbers that are the sum + product of some multiset of positive integers > 1. Nonzeros of A379669.

Original entry on oeis.org

1, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2025

Keywords

Comments

A superset of A379840.

Examples

			We have {2,5} with sum + product = 17, so 17 is in the sequence.
We have {2,3,5,5} with sum + product = 165, so 165 is in the sequence.
		

Crossrefs

The complement is A379670.
The strict version is A379841, see A379842.
Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667
- partitions without ones: A379668, antidiagonal sums A379669
- strict partitions: A379671, antidiagonal sums A379672
- strict partitions without ones: A379678, antidiagonal sums A379679
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722, see A111133
A002865 counts partitions into parts > 1, strict A025147.
A318950 counts factorizations by sum.

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Intersection[Range[nn],Total[#]+Times@@#&/@Join@@Array[facs,nn]]

A380216 Numbers whose prime indices have (product)/(sum) equal to an integer > 1.

Original entry on oeis.org

49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
   49: {4,4}
   63: {2,2,4}
   65: {3,6}
   81: {2,2,2,2}
  125: {3,3,3}
  150: {1,2,3,3}
  154: {1,4,5}
  165: {2,3,5}
  169: {6,6}
  190: {1,3,8}
  198: {1,2,2,5}
  259: {4,12}
  273: {2,4,6}
  333: {2,2,12}
  351: {2,2,2,6}
  361: {8,8}
  364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
		

Crossrefs

The fraction A003963(n)/A056239(n) reduces to A326153(n)/A326154(n).
The non-proper version is A326149, superset of A326150.
Also a superset of A326151.
The squarefree case is A326158 without first term.
Partitions of this type are counted by A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379735, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]

A380344 Product of prime indices minus sum of prime factors of n.

Original entry on oeis.org

1, -1, -1, -3, -2, -3, -3, -5, -2, -4, -6, -5, -7, -5, -2, -7, -10, -4, -11, -6, -2, -8, -14, -7, -1, -9, -1, -7, -19, -4, -20, -9, -4, -12, 0, -6, -25, -13, -4, -8, -28, -4, -29, -10, 1, -16, -32, -9, 2, -3, -6, -11, -37, -3, -1, -9, -6, -21, -42, -6, -43
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.

Examples

			72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 4 - 12 = -8.
		

Crossrefs

Positions of 0 are A331384.
For plus instead of minus we have A380409.
Positions of positives are A380410.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@prix[n]-Plus@@Prime/@prix[n],{n,100}]

Formula

a(n) = A003963(n) - A001414(n).

A353698 Number of integer partitions of n whose product equals their length.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 1, 2, 5, 1, 4, 0, 3, 3, 2, 1, 4, 2, 3, 2, 2, 0, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 4, 0, 4, 3, 3, 1, 6, 2, 3, 4, 4, 2, 4, 1, 4, 2, 3, 1, 8, 2, 4, 2, 4, 2, 5, 2, 4, 2
Offset: 0

Views

Author

Gus Wiseman, May 19 2022

Keywords

Examples

			The a(n) partitions for selected n (A..H = 10..17):
n=9:    n=21:             n=27:                 n=33:
---------------------------------------------------------------------------
51111   B1111111111       E1111111111111        H1111111111111111
321111  72111111111111    921111111111111111    B211111111111111111111
        531111111111111   54111111111111111111  831111111111111111111111
        4221111111111111                        5511111111111111111111111
                                                333111111111111111111111111
		

Crossrefs

The LHS (product of parts) is counted by A339095, rank statistic A003963.
The RHS (length) is counted by A008284, rank statistic A001222.
These partitions are ranked by A353699.
A266477 counts partitions by product of multiplicities, rank stat A005361.
A353504 counts partitions w/ product less than product of multiplicities.
A353505 counts partitions w/ product greater than product of multiplicities.
A353506 counts partitions w/ prod equal to prod of mults, ranked by A353503.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#==Length[#]&]],{n,0,30}]
  • PARI
    a(r,m=r,p=1,k=0) = {(p==k+r) + sum(m=2, min(m, (k+r)\p),  self()(r-m, min(m,r-m), p*m, k+1))} \\ Andrew Howroyd, Jan 02 2023

Extensions

Terms a(61) and beyond from Andrew Howroyd, Jan 02 2023

A380220 Least positive integer whose prime indices satisfy (product) - (sum) = n. Position of first appearance of n in A325036.

Original entry on oeis.org

2, 1, 21, 25, 39, 35, 57, 55, 49, 65, 75, 77, 129, 95, 91, 105, 183, 119, 125, 143, 133, 185, 147, 161, 169, 195, 175, 209, 339, 217, 255, 253, 259, 305, 247, 285, 273, 245, 301, 299, 345, 323, 325, 357, 371, 435, 669, 391, 361, 403, 399, 473, 343, 469, 481
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The least number whose prime indices satisfy (product) - (sum) = 3 is 25 (prime indices {3,3}), so a(3) = 25.
		

Crossrefs

Position of first appearance of n in A325036.
For sum instead of difference we have A379682, firsts of A379681.
A000040 lists the primes, differences A001223.
A003963 multiplies together prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
The subtraction A325036 takes the following values:
- zero: A301987, counted by A001055 (strict A045778).
- negative: A325037, counted by A114324, see A318029
- positive: A325038, counted by A096276 shifted right
- negative one: A325041, counted by A028422
- one: A325042, counted by A001055 shifted right
- nonnegative: A325044, counted by A096276
- nonpositive: A379721, counted by A319005

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pp=Table[Total[prix[n]]-Times@@prix[n],{n,100}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[pp,-i][[1,1]],{i,0,mnrm[-DeleteCases[pp,0|_?Positive]]}]

Formula

Satisfies A003963(a(n)) - A056239(a(n)) = n.

A380345 a(n) = n + sum of prime indices of n.

Original entry on oeis.org

1, 3, 5, 6, 8, 9, 11, 11, 13, 14, 16, 16, 19, 19, 20, 20, 24, 23, 27, 25, 27, 28, 32, 29, 31, 33, 33, 34, 39, 36, 42, 37, 40, 42, 42, 42, 49, 47, 47, 46, 54, 49, 57, 51, 52, 56, 62, 54, 57, 57, 60, 60, 69, 61, 63, 63, 67, 69, 76, 67, 79, 74, 71, 70, 74, 74, 86
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239.

Examples

			72 has prime indices {1,1,1,2,2}, so a(72) = 72 + 7 = 79.
		

Crossrefs

For factors instead of indices we have A075254.
For minus instead of plus we have A178503.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[n+Total[prix[n]],{n,100}]

Formula

a(n) = n + A056239(n).

A380409 Product of prime indices plus sum of prime factors.

Original entry on oeis.org

1, 3, 5, 5, 8, 7, 11, 7, 10, 10, 16, 9, 19, 13, 14, 9, 24, 12, 27, 12, 18, 18, 32, 11, 19, 21, 17, 15, 39, 16, 42, 11, 24, 26, 24, 14, 49, 29, 28, 14, 54, 20, 57, 20, 23, 34, 62, 13, 30, 21, 34, 23, 69, 19, 31, 17, 38, 41, 76, 18, 79, 44, 29, 13, 36, 26, 86
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.

Examples

			72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 12 + 4 = 16.
		

Crossrefs

For factors instead of indices we have A075254.
For indices instead of factors we have A379681.
For minus instead of plus we have A380344, zeros A331384.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Prime/@prix[n]]+Times@@prix[n],{n,100}]

Formula

a(n) = A003963(n) + A001414(n).
Previous Showing 41-50 of 61 results. Next