cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A322453 Number of factorizations of n into factors > 1 using only primes and perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

First differs from A000688 at a(36) = 5, A000688(36) = 4.
Terms in this sequence only depend on the prime signature of n. - David A. Corneth, Dec 26 2018

Examples

			The a(144) = 13 factorizations:
  (144),
  (4*36), (9*16),
  (2*2*36), (2*8*9), (3*3*16), (4*4*9),
  (2*2*4*9), (2*3*3*8), (3*3*4*4),
  (2*2*2*2*9), (2*2*3*3*4),
  (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[pfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],Or[PrimeQ[#],perpowQ[#]]&]}]];
    Table[Length[pfacs[n]],{n,100}]
  • PARI
    A322453(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(ispower(d)||isprime(d)), s += A322453(n/d, d))); (s)); \\ Antti Karttunen, Dec 26 2018

Extensions

More terms from Antti Karttunen, Dec 24 2018

A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2024

Keywords

Examples

			The a(3456) = 28 factorizations are:
  (4*8*9*12)  (4*9*96)    (36*96)   (3456)
              (8*9*48)    (4*864)
              (4*12*72)   (48*72)
              (4*16*54)   (54*64)
              (4*18*48)   (8*432)
              (4*24*36)   (9*384)
              (4*27*32)   (12*288)
              (4*8*108)   (16*216)
              (8*12*36)   (18*192)
              (8*16*27)   (24*144)
              (8*18*24)   (27*128)
              (9*12*32)   (32*108)
              (9*16*24)
              (12*16*18)
		

Crossrefs

Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050326, non-strict A050320.
For prime-powers we have A050361, non-strict A000688.
For nonprime numbers we have A050372, non-strict A050370.
The version for partitions is A256012, non-strict A114374.
For perfect-powers we have A323090, non-strict A294068.
The non-strict version is A376657.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • JavaScript
    function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactorDominic McCarty, Oct 19 2024
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by Gus Wiseman, Jun 27 2025 *)

A322546 Numbers k such that every integer partition of k contains a 1 or a prime power.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			24 does not belong to the sequence because there are integer partitions of 24 containing no 1's or prime powers, namely: (24), (18,6), (14,10), (12,12), (12,6,6), (6,6,6,6).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[n==1||PrimePowerQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1

A376657 Number of integer factorizations of n into nonsquarefree factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2024

Keywords

Examples

			The a(n) factorizations for n = 16, 64, 72, 144, 192, 256, 288:
  (16)   (64)     (72)    (144)    (192)     (256)      (288)
  (4*4)  (8*8)    (8*9)   (4*36)   (4*48)    (4*64)     (4*72)
         (4*16)   (4*18)  (8*18)   (8*24)    (8*32)     (8*36)
         (4*4*4)          (9*16)   (12*16)   (16*16)    (9*32)
                          (12*12)  (4*4*12)  (4*8*8)    (12*24)
                          (4*4*9)            (4*4*16)   (16*18)
                                             (4*4*4*4)  (4*8*9)
                                                        (4*4*18)
		

Crossrefs

For prime-powers we have A000688.
Positions of zeros are A005117 (squarefree numbers), complement A013929.
For squarefree instead of nonsquarefree we have A050320, strict A050326.
For nonprime numbers we have A050370.
The version for partitions is A114374.
For perfect-powers we have A294068.
For non-perfect-powers we have A303707.
For non-prime-powers we have A322452.
The strict case is A376679.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
A000040 lists the prime numbers, differences A001223.
A001055 counts integer factorizations, strict A045778.
A005117 lists squarefree numbers, differences A076259.
A317829 counts factorizations of superprimorials, strict A337069.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],NoneTrue[SquareFreeQ]]],{n,100}]
Previous Showing 11-14 of 14 results.