cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A380922 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(3*s)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 6, 2, 4, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 22 2025

Keywords

Comments

First differs from A061389 at n = 32.
First differs from A322483 at n = 32.
First differs from A372380 at n = 128 (next differences are at n=128*k, n=2187*k, ...).
The number of divisors of n that are both biquadratefree (A046100) and exponentially odd (A268335), i.e., in A336591. - Amiram Eldar, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 2, 3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 22 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X + X^3))[n], ", "))

Formula

Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055...,
f'(1) = f(1) * Sum_{p prime} (2*p^2 - 3*p + 4) * log(p) / ((p-1) * (p^3 + p^2 + 1)) = f(1) * 0.85825768698295295413525347933038488513032293516964600096226328323449...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2 and 3 otherwise. - Amiram Eldar, Apr 22 2025

A335385 The number of tri-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

A divisor d of k is tri-unitary if the greatest common bi-unitary divisor of d and k/d is 1.
Differs from A037445 at n = 32, 96, 128, 160, 224, ...

Examples

			a(4) = 2 since 4 has 2 tri-unitary divisors, 1 and 4. 2 is not a tri-unitary divisor of 4 since the greatest common bi-unitary divisor of 2 and 4/2 = 2 is 2 and not 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 3 || x == 6, 4, 2), factor(n)[, 2])); \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(p^e) = 4 if e = 3 or 6, and a(p^e) = 2 otherwise.

A365345 The number of divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 5, 3, 9, 3, 9, 3, 9, 9, 5, 3, 9, 3, 9, 9, 9, 3, 15, 3, 9, 5, 9, 3, 27, 3, 7, 9, 9, 9, 9, 3, 9, 9, 15, 3, 27, 3, 9, 9, 9, 3, 15, 3, 9, 9, 9, 3, 15, 9, 15, 9, 9, 3, 27, 3, 9, 9, 7, 9, 27, 3, 9, 9, 27, 3, 15, 3, 9, 9, 9, 9, 27, 3, 15, 5, 9, 3
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The sum of these divisors is A365346(n).
The number of divisors of the square root of the smallest square divisible by n is A322483(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 1 + Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 1 + x%2, factor(n)[, 2]));
    
  • PARI
    a(n) = numdiv(n*core(n)); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000005(A053143(n)).
Multiplicative with a(p^e) = e + 1 + (e mod 2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^3 * zeta(2*s) * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n)^2/2 + (3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)) * log(n) + 1 - 3*gamma + 3*gamma^2 - 3*sg1 + (3*gamma - 1)*12*zeta'(2)/Pi^2 + 12*zeta''(2)/Pi^2 + (12*zeta'(2)/Pi^2 + 3*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
f(1) = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(1) = f(1) * Sum_{primes p} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = 0.7343690473711153863995729489689746152413988981744946512300478410459132782...
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} 4*p*(-1 + 2*p + p^2 - 4*p^3) * log(p)^2 / (1 - 3*p + p^2 + p^3)^2 = 0.1829055032494906699795154632343894745397324334876662084674149254022564139...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)

A365347 The sum of divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 7, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 15, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 28, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 15, 84, 144, 68, 54
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The number of divisors of the smallest number whose square is divisible by n is A322483(n).
The sum of divisors of the smallest square divisible by n is A365346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^((e + Mod[e, 2])/2 + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^((f[i,2] + f[i,2]%2)/2 + 1) - 1)/(f[i,1] - 1));}
    
  • PARI
    a(n) = sigma(n/core(n, 1)[2]); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000203(A019554(n)).
Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/2) * A002117 * A065465 = 0.529814898136... .

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A322482 Table read by downward antidiagonals: T(n,k) is the greatest divisor of n which is a unitary divisor of k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

This relation was defined by Cohen in 1960.
The common notation for T(n,k) is (n,k)*.
If T(n,k) = 1 then n is said to be semi-prime to k.
In general T(n,k) != T(k,n).
The relation is used to define semi-unitary divisors (A322483).

Examples

			The table starts
  1  1  1  1  1  1  1  1  1  1 ...
  1  2  1  1  1  2  1  1  1  2 ...
  1  1  3  1  1  3  1  1  1  1 ...
  1  2  1  4  1  2  1  1  1  2 ...
  1  1  1  1  5  1  1  1  1  5 ...
  1  2  3  1  1  6  1  1  1  2 ...
  1  1  1  1  1  1  7  1  1  1 ...
  1  2  1  4  1  2  1  8  1  2 ...
  1  1  3  1  1  3  1  1  9  1 ...
  1  2  1  1  5  2  1  1  1 10 ...
  ...
The triangle formed by the antidiagonals starts
  1
  1 1
  1 2 1
  1 1 1 1
  1 1 3 2 1
  1 1 1 1 1 1
  1 2 1 4 1 2 1
  1 1 3 1 1 3 1 1
  1 1 1 2 5 1 1 2 1
  ...
		

References

  • J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 3.6, pp. 281.

Crossrefs

Cf. A050873 (gcd), A165430 (unitary gcd).

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], GCD[#,n/#] == 1 &]; semiuGCD[a_, b_] := Max[ Intersection[Divisors[a], udiv[b]]]; Table[semiuGCD[n, k], {n,1,20}, {k, n-1, 1, -1 }] // Flatten
  • PARI
    udivisors(n) = {my(d=divisors(n)); select(x->(gcd(x, n/x)==1), d);}
    T(n,k) = {my(dn = divisors(n), udk = udivisors(k)); vecmax(setintersect(dn, udk));} \\ Michel Marcus, Dec 14 2018

Formula

T(1,n) = T(n,1) = 1.
T(n,n) = n.

A332712 a(n) = Sum_{d|n} mu(d/gcd(d, n/d)).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2020

Keywords

Crossrefs

Cf. A001222, A001694 (positions of nonzero terms), A005361, A007427, A008683, A008836, A028242, A052485 (positions of 0's), A062838 (positions of 1's), A112526, A252505, A322483, A332685, A332713.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 100}]
    A005361[n_] := Times @@ (#[[2]] & /@ FactorInteger[n]); a[n_] := Sum[(-1)^PrimeOmega[n/d] A005361[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    f[p_, e_] := 3*Floor[e/2] - e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020

Formula

Dirichlet g.f.: zeta(2*s)^2 * zeta(3*s) / zeta(6*s).
a(n) = Sum_{d|n} mu(lcm(d, n/d)/d).
a(n) = Sum_{d|n} (-1)^bigomega(n/d) * A005361(d).
a(n) = Sum_{d|n} A010052(n/d) * A112526(d).
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)*log(n)/(2*zeta(3)) + ((2*gamma - 1)*zeta(3/2) + 3*zeta'(3/2)/2 - 3*zeta(3/2)*zeta'(3)/zeta(3)) * sqrt(n)/zeta(3) + 6*zeta(2/3)^2 * n^(1/3)/Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 21 2020
Multiplicative with a(p^e) = A028242(e). - Amiram Eldar, Nov 30 2020

A365551 The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, and from A353898 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Ceiling[(e + 3)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> ceil((x+3)/2), factor(n)[, 2]));

Formula

a(n) = A322483(A356191(n)).
Multiplicative with a(p^e) = ceiling((e+3)/2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.452592479445159559037143959382854734148246511441192913672347667991...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368468 a(n) is the number of exponentially odd divisors of the n-th exponentially odd number.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 3, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 6, 4, 3, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 2, 4, 2, 6, 4, 6, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 6, 2, 4, 4, 4, 4, 8, 2, 2, 8, 2, 6, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 12, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e + 3)/2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
    (* or *)
    f[p_, e_] := If[OddQ[e], (e + 3)/2, 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &]
  • PARI
    lista(kmax) = {my(e, d); for(k = 1, kmax, e = factor(k)[, 2]; d = prod(i = 1, #e, if(e[i]%2, (e[i] + 3)/2, 0)); if(d > 0, print1(d, ", ")));}

Formula

a(n) = A322483(A268335(n)).

A369307 The number of exponentially odd divisors d of n such that n/d is also exponentially odd.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 4, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Comments

First differs from A366308 at n = 32.
Dirichlet convolution of A295316 with itself.

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := If[OddQ[e], 2, e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 2, x/2), factor(n)[,2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X^2 + X)^2/(1 - X^2)^2)[n], ", ")) \\ Vaclav Kotesovec, Jan 19 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A369307(n): return prod(2 if e&1 else e>>1 for e in factorint(n).values()) # Chai Wah Wu, Jan 19 2024

Formula

Multiplicative with a(p^e) = 2 is e is odd, and e/2 if e is even.
a(n) >= 1, with equality if and only if n is the square of a squarefree number (A062503).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s)^2 * (Product_{p prime} (1 + 1/p^s - 1/p^(2*s)))^2.
From Vaclav Kotesovec, Jan 19 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Let f(s) = Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (2*p^2 + 2*p - 1) / (p^2*(p+1)^2)) = 0.49623881454854881762168565097162197963340069996226074849602334089041678...,
f'(1) = f(1) * Sum_{p prime} 2*(2*p + 1) * log(p) / ((p+1)*(p^2 + p - 1)) = f(1) * 1.49674466685934940187617305887881799198585080518913793200171026177150513...
and gamma is the Euler-Mascheroni constant A001620. (End)
Previous Showing 11-20 of 23 results. Next