cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A326293 Number of non-nesting, topologically connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326349.
Topologically connected simple graphs are A324328.
Non-crossing simple graphs are A054726.
Topologically connected set partitions are A099947.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A324327 Number of topologically connected chord graphs covering {1,...,n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 257
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.
Covering means there are no isolated vertices.

Examples

			The a(0) = 1 through a(5) = 11 graphs:
  {}  {{12}}  {{13}{24}}  {{13}{14}{25}}
                          {{13}{24}{25}}
                          {{13}{24}{35}}
                          {{14}{24}{35}}
                          {{14}{25}{35}}
                          {{13}{14}{24}{25}}
                          {{13}{14}{24}{35}}
                          {{13}{14}{25}{35}}
                          {{13}{24}{25}{35}}
                          {{14}{24}{25}{35}}
                          {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699 (the case with disjoint edges), A001764, A002061, A007297, A016098, A054726, A099947, A136653 (the case with set-theoretical connectedness also), A268814.
Cf. A324167, A324169 (non-crossing covers), A324172, A324173, A324323, A324328 (non-covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]

Formula

Inverse binomial transform of A324328.

A324328 Number of topologically connected chord graphs on a subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 354
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(5) = 27 graphs:
  {}  {}  {}      {}      {}          {}
          {{12}}  {{12}}  {{12}}      {{12}}
                  {{13}}  {{13}}      {{13}}
                  {{23}}  {{14}}      {{14}}
                          {{23}}      {{15}}
                          {{24}}      {{23}}
                          {{34}}      {{24}}
                          {{13}{24}}  {{25}}
                                      {{34}}
                                      {{35}}
                                      {{45}}
                                      {{13}{24}}
                                      {{13}{25}}
                                      {{14}{25}}
                                      {{14}{35}}
                                      {{24}{35}}
                                      {{13}{14}{25}}
                                      {{13}{24}{25}}
                                      {{13}{24}{35}}
                                      {{14}{24}{35}}
                                      {{14}{25}{35}}
                                      {{13}{14}{24}{25}}
                                      {{13}{14}{24}{35}}
                                      {{13}{14}{25}{35}}
                                      {{13}{24}{25}{35}}
                                      {{14}{24}{25}{35}}
                                      {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699, A001764, A002061, A007297, A016098, A054726 (non-crossing chord graphs), A099947, A136653, A268814.
Cf. A324168, A324169, A324172, A324173, A324323, A324327 (covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[crosscmpts[#]]<=1&]],{n,0,5}]

Formula

Binomial transform of A324327.

A324168 Number of non-crossing antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(3) = 19 non-crossing antichains:
  {}  {}     {}        {}
      {{1}}  {{1}}     {{1}}
             {{2}}     {{2}}
             {{12}}    {{3}}
             {{1}{2}}  {{12}}
                       {{13}}
                       {{23}}
                       {{123}}
                       {{1}{2}}
                       {{1}{3}}
                       {{2}{3}}
                       {{1}{23}}
                       {{2}{13}}
                       {{3}{12}}
                       {{12}{13}}
                       {{12}{23}}
                       {{13}{23}}
                       {{1}{2}{3}}
                       {{12}{13}{23}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A268814 Number of purely crossing partitions of [n].

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of a purely crossing partition refer to Dykema link (see PC(n) Definition 1.2 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
For n >= 1, a set partition of {1,...,n} is purely crossing if it is topologically connected (A099947), has no successive elements in the same block (A000110(n - 1)), and the first and last vertices belong to different blocks (A005493(n - 2)). For example, the a(4) = 1, a(6) = 5, and a(7) = 14 purely crossing set partitions are:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
    
  • PARI
    {a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
    for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies B(x) = x + (1 + x)*G(x) where B(x) is the g.f. of A268815 (see A(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} A000110(n)*x^n / ((1+x)^(2*n+1) * A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = 1/(1+x) * Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)^2*A(x) - k*x).
(3) A(x) = 1/(1+x - x/((1+x)*A(x) - 1*x/(1+x - x/((1+x)*A(x) - 2*x/(1+x - x/((1+x)*A(x) - 3*x/(1+x - x/((1+x)*A(x) - 4*x/(1+x - x/((1+x)*A(x) -...)))))))))), a continued fraction. (End)

A322402 Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Comments

If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019

Examples

			From _Gus Wiseman_, Feb 27 2019: (Start)
Triangle begins:
  1
  0      1
  0      1      2
  0      4      6      5
  0     27     36     28     14
  0    248    310    225    120     42
  0   2830   3396   2332   1210    495    132
  0  38232  44604  29302  14560   6006   2002    429
  0 593859 678696 430200 204540  81900  28392   8008   1430
Row n = 3 counts the following chord diagrams (see link for pictures):
  {{1,3},{2,5},{4,6}}  {{1,2},{3,5},{4,6}}  {{1,2},{3,4},{5,6}}
  {{1,4},{2,5},{3,6}}  {{1,3},{2,4},{5,6}}  {{1,2},{3,6},{4,5}}
  {{1,4},{2,6},{3,5}}  {{1,3},{2,6},{4,5}}  {{1,4},{2,3},{5,6}}
  {{1,5},{2,4},{3,6}}  {{1,5},{2,3},{4,6}}  {{1,6},{2,3},{4,5}}
                       {{1,5},{2,6},{3,4}}  {{1,6},{2,5},{3,4}}
                       {{1,6},{2,4},{3,5}}
(End)
		

Crossrefs

Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).

Formula

The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.

Extensions

Offset changed to 0 by Gus Wiseman, Feb 27 2019

A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			Triangle begins:
    1
    0    1
    0    1    0
    0    1    0    0
    0    1    1    0    0
    0    1    5    0    0    0
    0    1   16    4    0    0    0
    0    1   42   42    0    0    0    0
    0    1   99  258   27    0    0    0    0
    0    1  219 1222  465    0    0    0    0    0
Row n = 6 counts the following set partitions:
  {{123456}}  {{1235}{46}}  {{13}{25}{46}}
              {{124}{356}}  {{14}{25}{36}}
              {{1245}{36}}  {{14}{26}{35}}
              {{1246}{35}}  {{15}{24}{36}}
              {{125}{346}}
              {{13}{2456}}
              {{134}{256}}
              {{1345}{26}}
              {{1346}{25}}
              {{135}{246}}
              {{1356}{24}}
              {{136}{245}}
              {{14}{2356}}
              {{145}{236}}
              {{146}{235}}
              {{15}{2346}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]

A326335 Number of set partitions of {1..n} whose nesting blocks are connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 21, 86, 394, 1974, 10696
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Two blocks are nesting if they are of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. A set partition has its nesting blocks connected if the graph whose vertices are the blocks and whose edges are nesting pairs of blocks is connected.

Examples

			The a(0) = 1 through a(6) = 21 set partitions:
  {}  {1}  {12}  {123}  {1234}    {12345}    {123456}
                        {14}{23}  {125}{34}  {1236}{45}
                                  {134}{25}  {1245}{36}
                                  {14}{235}  {125}{346}
                                  {145}{23}  {1256}{34}
                                  {15}{234}  {126}{345}
                                             {134}{256}
                                             {1345}{26}
                                             {1346}{25}
                                             {136}{245}
                                             {14}{2356}
                                             {145}{236}
                                             {1456}{23}
                                             {146}{235}
                                             {15}{2346}
                                             {156}{234}
                                             {16}{2345}
                                             {15}{26}{34}
                                             {16}{23}{45}
                                             {16}{24}{35}
                                             {16}{25}{34}
		

Crossrefs

Simple graphs whose nesting blocks are connected are A326330.
Set partitions whose crossing blocks are connected are A099947.
Set partitions whose capturing blocks are connected are A326336.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[nestcmpts[#]]<=1&]],{n,0,5}]
Previous Showing 11-20 of 22 results. Next