cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A324713 a(n) = 2*A156552(n) XOR A323243(n).

Original entry on oeis.org

0, 3, 7, 2, 15, 12, 31, 6, 0, 31, 63, 26, 127, 48, 6, 6, 255, 20, 511, 50, 3, 114, 1023, 54, 4, 214, 4, 118, 2047, 10, 4095, 30, 114, 434, 2, 30, 8191, 768, 20, 118, 16383, 108, 32767, 194, 8, 1826, 65535, 110, 12, 45, 504, 386, 131071, 36, 19, 198, 20, 3348, 262143, 122, 524287, 6834, 112, 22, 246, 234, 1048575, 822, 1794, 120
Offset: 1

Views

Author

Antti Karttunen, Mar 13 2019

Keywords

Comments

a(n) is also the cumulative XOR of (2*A297106(d) XOR A324712(d)) over the divisors d of n.
It is conjectured that a(n) may obtain value zero only when n is a power of prime, and especially for n > 1, it must be a prime power present in A324201.

Crossrefs

Programs

  • PARI
    A324713(n) = { my(x=0,s=0); fordiv(n,d,x = bitxor(x,A324712(d)); s = bitxor(s,A297106(d))); bitxor(x,2*s); };

Formula

a(n) = 2*A156552(n) XOR A323243(n).
a(n) = XORsum_{d|n} (2*A297106(d) XOR A324712(d)).

A332225 Numbers k > 1 for which A048675(A332223(k)) is equal to 2*A048675(k).

Original entry on oeis.org

4, 9, 12, 20, 44, 52, 60, 108, 124, 125, 132, 140, 156, 172, 188, 204, 236, 300, 308, 396, 412, 436, 476, 492, 612, 644, 700, 836, 876, 884, 891, 924, 972, 980, 1004, 1044, 1092, 1100, 1116, 1148, 1188, 1196, 1236, 1260, 1268, 1292, 1300, 1308, 1372, 1380, 1476, 1620, 1628, 1724, 1860, 1900, 2140, 2244, 2324, 2356, 2444, 2460, 2652, 2660, 2700
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

Numbers k > 1 such that A332224(A156552(k)) = A087808(sigma(A156552(k))) is equal to 2*A048675(k) = A048675(k^2).
Notably, of the first 150 terms (4 .. 9996), 156 = 2^2 * 3 * 13 is the only even term that does not map to a prime, as A156552(156) = 267 = 3*89 (and sigma(267) = 360 = 4*90).
Although sigma(A156552(k)) = A323243(k) is a multiple of 4 for most of the terms k present in this sequence, there are exceptions, for example 840350 = A005940(1+A332445(1)) = 2^1 * 5^2 * 7^5 is one, as A048675(A332223(840350)) = 98 = 2*A048675(840350) and A323243(840350) = 2394 == 2 (mod 4).

Crossrefs

Programs

  • PARI
    for(n=2,2048,if(A048675(A332223(n))==2*A048675(n),print1(n,", ")))
    
  • PARI
    \\ To find all terms < 10000:
    v156552sigs = readvec("a156552.txt"); \\ Use the factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1)));
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A087808(n) = if(n<1, 0, if(n%2==0, 2*A087808(n/2), A087808((n-1)/2)+1));
    isA322225(n) = (A087808(A323243(n)) == 2*A048675(n));
    for(n=2,10000,if(isA322225(n),print1(n,", ")));

A324051 a(n) = A106315(A156552(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 2, 6, 0, 1, 18, 10, 3, 16, 4, 12, 67, 12, 4, 18, 30, 36, 260, 22, 16, 8, 8, 44, 5, 20, 1029, 30, 28, 164, 36, 28, 6, 256, 96, 44, 4102, 36, 7, 66, 16, 104, 16391, 46, 12, 13, 32, 130, 8, 28, 51, 70, 480, 942, 65544, 42, 9, 2724, 32, 66, 30, 84, 262153, 124, 508, 40, 10, 4, 1048586, 3320, 20, 188, 50, 52, 11, 78, 24
Offset: 2

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

Positions of zeros, which is sequence A005940(1+A001599(n)) sorted into ascending order: 2, 9, 125, 325, 351, 4199, ..., has A324201 as its subsequence.

Crossrefs

Programs

Formula

a(n) = A106315(A156552(n)).
a(n) = (A156552(n)*A324105(n)) mod A323243(n).

A324115 a(n) = A002487(A323244(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 0, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 4, -2, 4, 1, 5, -1, 7, 1, 5, 1, 3, 1, 4, 3, 11, -1, 3, 1, 1, -2, 5, 1, 4, 1, 6, 1, 13, 1, 7, -2, 7, 1, 7, 1, 3, -7, 9, -2, 25, 1, 8, 1, 76, 1, 5, 3, 8, 1, 21, 7, 3, 1, 7, 1, 31, 3, 31, -3, 13, 1, 10, -2, 199, 1, 5, -4, 101, -18, 4, 1, 2, -12, 43, 11, 266, -5, 9, 1, 11, -1, 4, 1, 6, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Comments

If there are no odd perfect numbers then A324201 gives the positions of all zeros after the initial a(1) = 0.

Crossrefs

Programs

  • PARI
    A002487(n) = if(abs(n)<=1, n, A002487(n\2) + if( n%2, A002487(n\2 + 1))); \\ This version works consistently also with negative arguments, so that a(-n) = -a(n). Except that it is very slow on large n.
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ So we use this one, modified from the one given in A002487
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k));
    A324115(n) = A002487(A323244(n));

Formula

a(n) = A002487(A323244(n)), with the definition of A002487 extended to the negative arguments so that A002487(-n) = -A002487(n).
a(A324201(n)) = 0.

A324815 a(n) = 2*A156552(n) AND A323243(n), where AND is bitwise-and, A004198.

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, 8, 12, 0, 0, 4, 0, 2, 16, 24, 0, 10, 0, 4, 36, 0, 0, 8, 24, 0, 24, 0, 0, 32, 0, 32, 4, 0, 40, 32, 0, 2, 128, 8, 0, 2, 0, 4, 36, 0, 0, 16, 48, 18, 4, 4, 0, 26, 72, 8, 512, 2, 0, 4, 0, 0, 12, 104, 8, 0, 0, 0, 4, 2, 0, 72, 0, 0, 32, 0, 80, 0, 0, 16, 8, 0, 0, 20, 256, 0, 2048, 0, 0, 74, 128, 0, 0, 0, 520, 56, 0, 32, 128, 64, 0, 2, 0, 8, 64
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A156552(n) AND A323243(n), where AND is A004198.
a(n) = 2*A156552(n) - A324716(n) = 2*A156552(n) XOR A324716(n), where XOR is A003987.
For n > 1, a(n) = A318468(A156552(n)).
a(p) = 0 for all primes p.
a(A324201(n)) = A139256(n).
A000120(a(n)) = A324816(n).

A324551 Positions of negative terms in A323244.

Original entry on oeis.org

21, 25, 35, 39, 49, 55, 57, 77, 81, 85, 87, 91, 95, 99, 105, 111, 115, 121, 129, 133, 143, 155, 159, 161, 169, 183, 185, 187, 189, 195, 201, 203, 205, 209, 213, 221, 225, 235, 237, 247, 253, 259, 265, 267, 285, 287, 289, 295, 299, 301, 303, 319, 321, 323, 325, 335, 339, 341, 343, 351, 355, 361, 365, 371, 377, 381, 385, 391, 393, 403
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Comments

Sequence A005940(1+A005101(n)) sorted into ascending order.
The first two even terms are 3710 and 4096, where A323244(3710) = -942 and A323244(4096) = -546.

Crossrefs

A329641 a(n) = gcd(A329638(n), A329639(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 1, 1, 18, 1, 18, 1, 22, 1, 46, 1, 22, 1, 10, 1, 30, 14, 82, 2, 1, 1, 256, 2, 22, 1, 1, 1, 66, 1, 226, 1, 46, 1, 1, 8, 130, 1, 1, 1, 70, 2, 748, 1, 42, 1, 1362, 2, 2, 10, 42, 1, 214, 254, 4, 1, 1, 1, 3838, 5, 406, 2, 2, 1, 78, 1, 5458, 1, 26, 2, 12250, 2, 10, 1, 2, 1, 934
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A323243(n) = if(1==n,0,sigma(A156552(n)));
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A329644(n) = sumdiv(n,d,moebius(n/d)*((2*A156552(d))-A323243(d)));
    A329641(n) = { my(t=0,u=0); fordiv(n, d, if((d=A329644(d))>0, t +=d, u -= d)); gcd(u,t); };

Formula

a(n) = gcd(A329638(n), A329639(n)).
a(A324201(n)) = A329610(n).

A332463 Möbius transform of A332223.

Original entry on oeis.org

1, 1, 3, 3, 7, 4, 15, 2, 21, 9, 31, 13, 63, 4, 10, 42, 127, -3, 255, 14, 21, 88, 511, 22, 117, 320, 24, 97, 1023, -22, 2047, -36, 190, 1444, 82, 34, 4095, -200, 120, 306, 8191, 14, 16383, -59, 13, 4180, 32767, 30, 609, -103, 15494, -303, 65535, 30, 141, -32, -6, 8920, 131071, 132, 262143, 506030, 564, 834, 658, -149
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A332223(d).

A324721 Positions of positive terms in A323244; numbers n for which 2*A156552(n) > A323243(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2019

Keywords

Comments

These correspond to deficient numbers as this is sequence A005940(1+A005100(n)) sorted into ascending order. Subsequence of A324720.

Crossrefs

Cf. A005100, A005940, A156552, A323243, A323244, A324732 (characteristic function).

A324720 Positions of nonnegative terms in A323244; numbers n for which 2*A156552(n) >= A323243(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2019

Keywords

Comments

These correspond to nonabundant numbers as the terms after the initial 1 are obtained by sorting the sequence A005940(1+A263837(n)) into ascending order.

Crossrefs

Cf. A324551 (complement), A324201, A324721 (subsequences).
Previous Showing 11-20 of 27 results. Next