cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A361205 a(n) = 2*omega(n) - bigomega(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, -1, 0, 2, 1, 1, 1, 2, 2, -2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, -1, 1, 1, 3, 1, -3, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 1, 1, 2, 1, -1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 1, -4, 2, 3, 1, 1, 2, 3, 1, -1, 1, 2, 1, 1, 2, 3, 1, -1, -2, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Crossrefs

Without doubling omega we have -A046660.
Positions of 0's are A067801, counted by A239959.
Positions of negative terms are A360558, counted by A360254.
Positions of nonpositive terms are A361204, counted by A237363.
Positions of positive terms are A361393, counted by A237365.
Positions of nonnegative terms are A361395, counted by A361394.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    Table[2*PrimeNu[n]-PrimeOmega[n],{n,100}]

Formula

Additive with a(p^e) = 2 - e. - Amiram Eldar, Mar 26 2023
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = 2*A077761 - A083342 = A077761 - A136141 = -0.511659... . - Amiram Eldar, Oct 01 2023

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.

A361852 Number of integer partitions of n such that (length) * (maximum) < 2n.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) < 2*(mean).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (2211)    (421)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (22111)
                                               (211111)
                                               (1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
		

Crossrefs

For length instead of mean we have A237754.
Allowing equality gives A237755, for median A361848.
For equal median we have A361849, ranks A361856.
The equal version is A361853, ranks A361855.
For median instead of mean we have A361858.
The complement is counted by A361906.
Reversing the inequality gives A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<2n&]],{n,30}]

A361204 Positive integers k such that 2*omega(k) <= bigomega(k).

Original entry on oeis.org

1, 4, 8, 9, 16, 24, 25, 27, 32, 36, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 100, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2023

Keywords

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    24: {1,1,1,2}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    49: {4,4}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A237363.
The complement is A361393.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Maple
    filter:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(t[2],t=F) >= 2*nops(F)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 22 2023
  • Mathematica
    Select[Range[100],2*PrimeNu[#]<=PrimeOmega[#]&]

Formula

A001222(a(n)) >= 2*A001221(a(n)).

A361395 Positive integers k such that 2*omega(k) >= bigomega(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

Differs from A068938 in having 1 and 4 and lacking 80.
Includes all squarefree numbers.

Examples

			The prime indices of 80 are {1,1,1,1,3}, with 5 parts and 2 distinct parts, and 2*2 < 5, so 80 is not in the sequence.
		

Crossrefs

Complement of A360558.
Positions of nonnegative terms in A361205.
These partitions are counted by A361394.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    Select[Range[100],2*PrimeNu[#]>=PrimeOmega[#]&]

Formula

A001222(a(n)) <= 2*A001221(a(n)).

A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.

Original entry on oeis.org

1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
All terms are odd. - Michael S. Branicky, Mar 12 2022

Examples

			The terms together with their prime indices begin:
      1 = 1
      3 = prime(2)^1
      7 = prime(4)^1
     13 = prime(6)^1
     19 = prime(8)^1
     21 = prime(4)^1 prime(2)^1
     27 = prime(2)^3
     29 = prime(10)^1
     37 = prime(12)^1
     39 = prime(6)^1 prime(2)^1
     43 = prime(14)^1
     53 = prime(16)^1
     57 = prime(8)^1 prime(2)^1
     61 = prime(18)^1
     71 = prime(20)^1
		

Crossrefs

The restriction to primes is A031215.
These partitions are counted by A055922 (aerated).
The first condition alone is A066207, counted by A035363.
The squarefree case is A258117.
The second condition alone is A268335, counted by A055922.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        if n%2 == 0: return False
        return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
    print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Intersection of A066207 and A268335.
A257991(a(n)) = A162641(a(n)) = 0.
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A001222(a(n)).

A361393 Positive integers k such that 2*omega(k) > bigomega(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

First differs from A317090 in having 120 and lacking 360.
There are numbers like 1, 120, 168, 180, 252,... which are not in A179983 but in here, and others like 360, 504, 540, 600,... which are in A179983 but not in here. - R. J. Mathar, Mar 21 2023

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
The prime indices of 120 are {1,1,1,2,3}, with 3 distinct parts and 5 parts, and 2*3 > 5, so 120 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with 3 distinct parts and 6 parts, and 2*3 is not greater than 6, so 360 is not in the sequence.
		

Crossrefs

These partitions are counted by A237365.
The complement is A361204.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.
A326567/A326568 gives mean of prime indices.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Maple
    isA361393 := proc(n)
        if 2*A001221(n) > numtheory[bigomega](n) then
            true;
        else
            false ;
        end if:
    end proc:
    for n from 1 to 100 do
        if isA361393(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 21 2023
  • Mathematica
    Select[Range[1000],2*PrimeNu[#]>PrimeOmega[#]&]

Formula

{k: 2*A001221(k) > A001222(k)}. - R. J. Mathar, Mar 21 2023

A340929 Heinz numbers of integer partitions of odd negative rank.

Original entry on oeis.org

4, 12, 16, 18, 27, 40, 48, 60, 64, 72, 90, 100, 108, 112, 135, 150, 160, 162, 168, 192, 225, 240, 243, 250, 252, 256, 280, 288, 352, 360, 375, 378, 392, 400, 420, 432, 448, 528, 540, 567, 588, 600, 625, 630, 640, 648, 672, 700, 768, 792, 810, 832, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       4: (1,1)             150: (3,3,2,1)
      12: (2,1,1)           160: (3,1,1,1,1,1)
      16: (1,1,1,1)         162: (2,2,2,2,1)
      18: (2,2,1)           168: (4,2,1,1,1)
      27: (2,2,2)           192: (2,1,1,1,1,1,1)
      40: (3,1,1,1)         225: (3,3,2,2)
      48: (2,1,1,1,1)       240: (3,2,1,1,1,1)
      60: (3,2,1,1)         243: (2,2,2,2,2)
      64: (1,1,1,1,1,1)     250: (3,3,3,1)
      72: (2,2,1,1,1)       252: (4,2,2,1,1)
      90: (3,2,2,1)         256: (1,1,1,1,1,1,1,1)
     100: (3,3,1,1)         280: (4,3,1,1,1)
     108: (2,2,2,1,1)       288: (2,2,1,1,1,1,1)
     112: (4,1,1,1,1)       352: (5,1,1,1,1,1)
     135: (3,2,2,2)         360: (3,2,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101707.
The positive version is A101707 (A340604).
The even version is A101708 (A340930).
The not necessarily odd version is A064173 (A340788).
A001222 counts prime factors.
A027193 counts partitions of odd length (A026424).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank equal to maximum minus minimum part (A324515).
A324518 counts partitions with rank equal to greatest part (A324517).
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],OddQ[rk[#]]&&rk[#]<0&]

Formula

For all terms, A061395(a(n)) - A001222(a(n)) is odd and negative.

A340930 Heinz numbers of integer partitions of even negative rank.

Original entry on oeis.org

8, 24, 32, 36, 54, 80, 81, 96, 120, 128, 144, 180, 200, 216, 224, 270, 300, 320, 324, 336, 384, 405, 450, 480, 486, 500, 504, 512, 560, 576, 675, 704, 720, 729, 750, 756, 784, 800, 840, 864, 896, 1056, 1080, 1125, 1134, 1176, 1200, 1250, 1260, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       8: (1,1,1)             270: (3,2,2,2,1)
      24: (2,1,1,1)           300: (3,3,2,1,1)
      32: (1,1,1,1,1)         320: (3,1,1,1,1,1,1)
      36: (2,2,1,1)           324: (2,2,2,2,1,1)
      54: (2,2,2,1)           336: (4,2,1,1,1,1)
      80: (3,1,1,1,1)         384: (2,1,1,1,1,1,1,1)
      81: (2,2,2,2)           405: (3,2,2,2,2)
      96: (2,1,1,1,1,1)       450: (3,3,2,2,1)
     120: (3,2,1,1,1)         480: (3,2,1,1,1,1,1)
     128: (1,1,1,1,1,1,1)     486: (2,2,2,2,2,1)
     144: (2,2,1,1,1,1)       500: (3,3,3,1,1)
     180: (3,2,2,1,1)         504: (4,2,2,1,1,1)
     200: (3,3,1,1,1)         512: (1,1,1,1,1,1,1,1,1)
     216: (2,2,2,1,1,1)       560: (4,3,1,1,1,1)
     224: (4,1,1,1,1,1)       576: (2,2,1,1,1,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101708.
The positive version is (A340605).
The odd version is A101707 (A340929).
The not necessarily even version is A064173 (A340788).
A001222 counts prime factors.
A027187 counts partitions of even length.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058696 counts partitions of even numbers.
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],EvenQ[rk[#]]&&rk[#]<0&]
Previous Showing 11-19 of 19 results.