A324738
Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
Offset: 0
The a(0) = 1 through a(6) = 26 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {1,6}
{3,4} {2,4}
{4,5} {2,5}
{2,4,5} {2,6}
{3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{1,3,6}
{1,5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324744. The case of subsets of {2...n} is
A324739. The strict integer partition version is
A324749. The integer partition version is
A324754. The Heinz number version is
A324759. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A331912
Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 26, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 52, 53, 58, 59, 61, 64, 65, 67, 71, 73, 74, 79, 81, 83, 86, 87, 89, 91, 94, 97, 101, 103, 104, 107, 109, 111, 113, 116, 117, 121, 122, 125, 127, 128, 129, 131, 137
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 86: {1,14}
2: {1} 39: {2,6} 87: {2,10}
3: {2} 41: {13} 89: {24}
4: {1,1} 43: {14} 91: {4,6}
5: {3} 47: {15} 94: {1,15}
7: {4} 49: {4,4} 97: {25}
8: {1,1,1} 52: {1,1,6} 101: {26}
9: {2,2} 53: {16} 103: {27}
11: {5} 58: {1,10} 104: {1,1,1,6}
13: {6} 59: {17} 107: {28}
16: {1,1,1,1} 61: {18} 109: {29}
17: {7} 64: {1,1,1,1,1,1} 111: {2,12}
19: {8} 65: {3,6} 113: {30}
23: {9} 67: {19} 116: {1,1,10}
25: {3,3} 71: {20} 117: {2,2,6}
26: {1,6} 73: {21} 121: {5,5}
27: {2,2,2} 74: {1,12} 122: {1,18}
29: {10} 79: {22} 125: {3,3,3}
31: {11} 81: {2,2,2,2} 127: {31}
32: {1,1,1,1,1} 83: {23} 128: {1,1,1,1,1,1,1}
For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with exactly one distinct prime index in S are
A331913.
-
aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;
Select[Range[100],aQ]
A324699
Lexicographically earliest sequence of positive integers whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 7, 9, 19, 21, 27, 29, 49, 57, 63, 71, 79, 81, 87, 107, 113, 133, 147, 171, 189, 203, 213, 229, 237, 243, 261, 271, 311, 321, 339, 343, 359, 361, 399, 409, 421, 441, 457, 497, 513, 551, 553, 567, 593, 609, 619, 639, 687, 711, 729, 749, 757, 783, 791, 813
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
7: {4}
9: {2,2}
19: {8}
21: {2,4}
27: {2,2,2}
29: {10}
49: {4,4}
57: {2,8}
63: {2,2,4}
71: {20}
79: {22}
81: {2,2,2,2}
87: {2,10}
107: {28}
113: {30}
133: {4,8}
147: {2,4,4}
171: {2,2,8}
189: {2,2,2,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360,
A306719.
Cf.
A324694,
A324695,
A324696,
A324697,
A324698,
A324700,
A324701,
A324702,
A324703,
A324704,
A324705.
A324700
Lexicographically earliest sequence containing 0 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
0, 2, 4, 5, 8, 10, 11, 13, 16, 20, 22, 23, 25, 26, 31, 32, 37, 40, 43, 44, 46, 50, 52, 55, 59, 62, 64, 65, 73, 74, 80, 83, 86, 88, 89, 92, 100, 101, 103, 104, 110, 115, 118, 121, 124, 125, 128, 130, 131, 137, 143, 146, 148, 155, 160, 163, 166, 169, 172, 176
Offset: 1
The sequence of terms together with their prime indices begins:
0
2: {1}
4: {1,1}
5: {3}
8: {1,1,1}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
20: {1,1,3}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
31: {11}
32: {1,1,1,1,1}
37: {12}
40: {1,1,1,3}
43: {14}
44: {1,1,5}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,True,1,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[0,100],aQ]
A324701
Lexicographically earliest sequence containing 1 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 5, 6, 9, 11, 12, 14, 17, 21, 23, 24, 26, 27, 32, 33, 38, 41, 44, 45, 47, 51, 53, 56, 60, 63, 65, 66, 74, 75, 81, 84, 87, 89, 90, 93, 101, 102, 104, 105, 111, 116, 119, 122, 125, 126, 129, 131, 132, 138, 144, 147, 149, 156, 161, 164, 167, 170, 173, 177
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,100],aQ]
A324702
Lexicographically earliest sequence containing 2 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
2, 5, 13, 25, 43, 65, 101, 125, 169, 193, 215, 317, 325, 505, 557, 559, 625, 701, 845, 965, 1013, 1075, 1181, 1313, 1321, 1585, 1625, 1849, 2111, 2161, 2197, 2509, 2525, 2785, 2795, 3125, 3505, 3617, 4049, 4057, 4121, 4225, 4343, 4639, 4825, 5065, 5297, 5375
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
5: {3}
13: {6}
25: {3,3}
43: {14}
65: {3,6}
101: {26}
125: {3,3,3}
169: {6,6}
193: {44}
215: {3,14}
317: {66}
325: {3,3,6}
505: {3,26}
557: {102}
559: {6,14}
625: {3,3,3,3}
701: {126}
845: {3,6,6}
965: {3,44}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,False,2,True,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[100],aQ]
A324703
Lexicographically earliest sequence containing 3 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
3, 6, 14, 26, 44, 66, 102, 126, 170, 194, 216, 318, 326, 506, 558, 560, 626, 702, 846, 966, 1014, 1076, 1182, 1314, 1322, 1586, 1626, 1850, 2112, 2162, 2198, 2510, 2526, 2786, 2796, 3126, 3506, 3618, 4050, 4058, 4122, 4226, 4344, 4640, 4826, 5066, 5298, 5376
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,3,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,1000],aQ]
A324705
Lexicographically earliest sequence containing 1 and all composite numbers divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,True,?PrimeQ,False,,!And@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]]];
Select[Range[200],aQ]
A331784
Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 83, 87, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 111, 113, 115, 119, 122, 127, 131, 133, 137, 139, 141, 142
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 43: {14} 91: {4,6} 141: {2,15}
2: {1} 46: {1,9} 94: {1,15} 142: {1,20}
3: {2} 47: {15} 95: {3,8} 143: {5,6}
5: {3} 49: {4,4} 97: {25} 145: {3,10}
7: {4} 53: {16} 98: {1,4,4} 147: {2,4,4}
11: {5} 57: {2,8} 101: {26} 149: {35}
13: {6} 58: {1,10} 103: {27} 151: {36}
14: {1,4} 59: {17} 106: {1,16} 157: {37}
17: {7} 61: {18} 107: {28} 158: {1,22}
19: {8} 65: {3,6} 109: {29} 159: {2,16}
21: {2,4} 67: {19} 111: {2,12} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
26: {1,6} 71: {20} 115: {3,9} 167: {39}
29: {10} 73: {21} 119: {4,7} 169: {6,6}
31: {11} 74: {1,12} 122: {1,18} 173: {40}
35: {3,4} 77: {4,5} 127: {31} 178: {1,24}
37: {12} 79: {22} 131: {32} 179: {41}
38: {1,8} 83: {23} 133: {4,8} 181: {42}
39: {2,6} 87: {2,10} 137: {33} 182: {1,4,6}
41: {13} 89: {24} 139: {34} 183: {2,18}
For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
Contains all prime numbers
A000040.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with at most one distinct prime index in S are
A331912.
Numbers S with exactly one distinct prime index in S are
A331913.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
Select[Range[100],aQ]
Comments