A324702
Lexicographically earliest sequence containing 2 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
2, 5, 13, 25, 43, 65, 101, 125, 169, 193, 215, 317, 325, 505, 557, 559, 625, 701, 845, 965, 1013, 1075, 1181, 1313, 1321, 1585, 1625, 1849, 2111, 2161, 2197, 2509, 2525, 2785, 2795, 3125, 3505, 3617, 4049, 4057, 4121, 4225, 4343, 4639, 4825, 5065, 5297, 5375
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
5: {3}
13: {6}
25: {3,3}
43: {14}
65: {3,6}
101: {26}
125: {3,3,3}
169: {6,6}
193: {44}
215: {3,14}
317: {66}
325: {3,3,6}
505: {3,26}
557: {102}
559: {6,14}
625: {3,3,3,3}
701: {126}
845: {3,6,6}
965: {3,44}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,False,2,True,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[100],aQ]
A324703
Lexicographically earliest sequence containing 3 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
3, 6, 14, 26, 44, 66, 102, 126, 170, 194, 216, 318, 326, 506, 558, 560, 626, 702, 846, 966, 1014, 1076, 1182, 1314, 1322, 1586, 1626, 1850, 2112, 2162, 2198, 2510, 2526, 2786, 2796, 3126, 3506, 3618, 4050, 4058, 4122, 4226, 4344, 4640, 4826, 5066, 5298, 5376
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,3,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,1000],aQ]
A324705
Lexicographically earliest sequence containing 1 and all composite numbers divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,True,?PrimeQ,False,,!And@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]]];
Select[Range[200],aQ]
A331784
Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 83, 87, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 111, 113, 115, 119, 122, 127, 131, 133, 137, 139, 141, 142
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 43: {14} 91: {4,6} 141: {2,15}
2: {1} 46: {1,9} 94: {1,15} 142: {1,20}
3: {2} 47: {15} 95: {3,8} 143: {5,6}
5: {3} 49: {4,4} 97: {25} 145: {3,10}
7: {4} 53: {16} 98: {1,4,4} 147: {2,4,4}
11: {5} 57: {2,8} 101: {26} 149: {35}
13: {6} 58: {1,10} 103: {27} 151: {36}
14: {1,4} 59: {17} 106: {1,16} 157: {37}
17: {7} 61: {18} 107: {28} 158: {1,22}
19: {8} 65: {3,6} 109: {29} 159: {2,16}
21: {2,4} 67: {19} 111: {2,12} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
26: {1,6} 71: {20} 115: {3,9} 167: {39}
29: {10} 73: {21} 119: {4,7} 169: {6,6}
31: {11} 74: {1,12} 122: {1,18} 173: {40}
35: {3,4} 77: {4,5} 127: {31} 178: {1,24}
37: {12} 79: {22} 131: {32} 179: {41}
38: {1,8} 83: {23} 133: {4,8} 181: {42}
39: {2,6} 87: {2,10} 137: {33} 182: {1,4,6}
41: {13} 89: {24} 139: {34} 183: {2,18}
For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
Contains all prime numbers
A000040.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with at most one distinct prime index in S are
A331912.
Numbers S with exactly one distinct prime index in S are
A331913.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
Select[Range[100],aQ]
A324755
Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
Offset: 0
The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
(2) (3) (4) (5) (6) (7) (8) (9) (A)
(22) (33) (43) (44) (54) (55)
(42) (52) (62) (63) (64)
(222) (422) (72) (73)
(2222) (333) (82)
(522) (433)
(442)
(622)
(4222)
(22222)
Cf.
A000837,
A001462,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324696,
A324744.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@If[k==1,{},FactorInteger[k]]]]&]],{n,0,30}]
A324750
Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
Offset: 0
The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 62 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 A3 B3 B4 D3 C5
642 B2 C2 C3 E2 D4
643 752 D2 763 E3
652 842 654 862 F2
762 943 854
843 A42 863
852 872
A43
A52
B42
6542
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A290822,
A304360,
A305713,
A306844.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A324760
Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
The subset version is
A324739, with maximal case
A324762. The strict integer partition version is
A324750. The integer partition version is
A324755. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A289509,
A290822,
A306844,
A324695,
A324696,
A324737,
A324744.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[primeMS[#],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A331785
Lexicographically earliest sequence containing 1 and all positive integers with exactly one prime index already in the sequence, counting multiplicity.
Original entry on oeis.org
1, 2, 3, 5, 11, 14, 21, 26, 31, 34, 35, 38, 39, 43, 46, 51, 57, 58, 65, 69, 73, 74, 77, 82, 85, 87, 94, 95, 98, 101, 106, 111, 115, 118, 122, 123, 127, 134, 139, 141, 142, 143, 145, 147, 149, 158, 159, 163, 166, 167, 177, 178, 182, 183, 185, 187, 191, 194, 199
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 73: {21} 142: {1,20} 205: {3,13}
2: {1} 74: {1,12} 143: {5,6} 206: {1,27}
3: {2} 77: {4,5} 145: {3,10} 209: {5,8}
5: {3} 82: {1,13} 147: {2,4,4} 213: {2,20}
11: {5} 85: {3,7} 149: {35} 214: {1,28}
14: {1,4} 87: {2,10} 158: {1,22} 217: {4,11}
21: {2,4} 94: {1,15} 159: {2,16} 218: {1,29}
26: {1,6} 95: {3,8} 163: {38} 226: {1,30}
31: {11} 98: {1,4,4} 166: {1,23} 233: {51}
34: {1,7} 101: {26} 167: {39} 235: {3,15}
35: {3,4} 106: {1,16} 177: {2,17} 237: {2,22}
38: {1,8} 111: {2,12} 178: {1,24} 238: {1,4,7}
39: {2,6} 115: {3,9} 182: {1,4,6} 245: {3,4,4}
43: {14} 118: {1,17} 183: {2,18} 249: {2,23}
46: {1,9} 122: {1,18} 185: {3,12} 253: {5,9}
51: {2,7} 123: {2,13} 187: {5,7} 262: {1,32}
57: {2,8} 127: {31} 191: {43} 265: {3,16}
58: {1,10} 134: {1,19} 194: {1,25} 266: {1,4,8}
65: {3,6} 139: {34} 199: {46} 267: {2,24}
69: {2,9} 141: {2,15} 201: {2,19} 269: {57}
For example, the prime indices of 77 are {4,5}, of which only 5 is in the sequence, so 77 is in the sequence.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with at most one distinct prime index in S are
A331912.
Numbers S with exactly one distinct prime index in S are
A331913.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aQ[n_]:=n==1||Length[Select[primeMS[n],aQ]]==1;
Select[Range[100],aQ]
A324739
Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1
The a(1) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {2,6}
{2,4,5} {3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324762. The case of subsets of {1...n} is
A324738. The strict integer partition version is
A324750. The integer partition version is
A324755. The Heinz number version is
A324760. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A331913
Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 26, 27, 31, 32, 39, 49, 52, 53, 58, 59, 64, 65, 67, 74, 81, 82, 83, 86, 87, 91, 94, 97, 101, 103, 104, 111, 116, 117, 121, 122, 123, 125, 127, 128, 129, 131, 141, 142, 143, 145, 146, 148, 158, 164, 167, 172, 178
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 52: {1,1,6} 116: {1,1,10}
2: {1} 53: {16} 117: {2,2,6}
3: {2} 58: {1,10} 121: {5,5}
4: {1,1} 59: {17} 122: {1,18}
5: {3} 64: {1,1,1,1,1,1} 123: {2,13}
7: {4} 65: {3,6} 125: {3,3,3}
8: {1,1,1} 67: {19} 127: {31}
9: {2,2} 74: {1,12} 128: {1,1,1,1,1,1,1}
11: {5} 81: {2,2,2,2} 129: {2,14}
16: {1,1,1,1} 82: {1,13} 131: {32}
17: {7} 83: {23} 141: {2,15}
19: {8} 86: {1,14} 142: {1,20}
23: {9} 87: {2,10} 143: {5,6}
25: {3,3} 91: {4,6} 145: {3,10}
26: {1,6} 94: {1,15} 146: {1,21}
27: {2,2,2} 97: {25} 148: {1,1,12}
31: {11} 101: {26} 158: {1,22}
32: {1,1,1,1,1} 103: {27} 164: {1,1,13}
39: {2,6} 104: {1,1,1,6} 167: {39}
49: {4,4} 111: {2,12} 172: {1,1,14}
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with at most one distinct prime index in S are
A331912.
Comments