cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 74 results. Next

A324935 Matula-Goebel numbers of rooted trees whose non-leaf terminal subtrees are all different.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 84, 85, 86, 88, 89, 91, 95, 96, 101, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Every positive integer has a unique factorization into factors q(i) = prime(i)/i, i > 0. This sequence consists of all numbers where this factorization has all distinct factors, except possibly for any multiplicity of q(1). For example, 22 = q(1)^2 q(2) q(3) q(5) is in the sequence, while 50 = q(1)^3 q(2)^2 q(3)^2 is not.
The enumeration of these trees by number of vertices is A324936.

Examples

			The sequence of trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Select[Range[100],UnsameQ@@DeleteCases[difac[#],1]&]

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025

A324926 Numbers not divisible by any prime indices of their prime indices.

Original entry on oeis.org

1, 2, 4, 5, 8, 11, 16, 17, 22, 23, 25, 31, 32, 34, 41, 44, 47, 55, 59, 62, 64, 67, 73, 82, 83, 85, 88, 97, 103, 109, 115, 118, 121, 124, 125, 127, 128, 134, 137, 149, 157, 164, 166, 167, 176, 179, 187, 191, 194, 197, 205, 211, 218, 227, 233, 235, 236, 241, 242
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it belongs to the sequence.

Examples

			The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
   1: {}
   2: {{}}
   4: {{},{}}
   5: {{2}}
   8: {{},{},{}}
  11: {{3}}
  16: {{},{},{},{}}
  17: {{4}}
  22: {{},{3}}
  23: {{2,2}}
  25: {{2},{2}}
  31: {{5}}
  32: {{},{},{},{},{}}
  34: {{},{4}}
  41: {{6}}
  44: {{},{},{3}}
  47: {{2,3}}
  55: {{2},{3}}
  59: {{7}}
  62: {{},{5}}
  64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[!Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]

A324934 Inverse permutation to A324931.

Original entry on oeis.org

1, 2, 4, 3, 10, 6, 9, 5, 12, 15, 35, 8, 24, 14, 26, 7, 41, 17, 23, 20, 25, 47, 52, 13, 58, 34, 28, 19, 79, 37, 184, 11, 87, 61, 53, 22, 56, 33, 60, 30, 145, 36, 92, 70, 65, 75, 164, 18, 51, 82, 98, 46, 54, 39, 178, 29, 59, 106, 293, 49, 122, 245, 63, 16, 125
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Crossrefs

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]

A353397 Replace prime(k) with prime(2^k) in the prime factorization of n.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 53, 27, 49, 57, 131, 63, 311, 159, 133, 81, 719, 147, 1619, 171, 371, 393, 3671, 189, 361, 933, 343, 477, 8161, 399, 17863, 243, 917, 2157, 1007, 441, 38873, 4857, 2177, 513, 84017, 1113, 180503, 1179, 931, 11013, 386093, 567, 2809, 1083
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     19: {8}
     21: {2,4}
     53: {16}
     27: {2,2,2}
     49: {4,4}
     57: {2,8}
    131: {32}
     63: {2,2,4}
		

Crossrefs

These are the positions of first appearances in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A033844 lists primes indexed by powers of 2.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A181819 gives prime shadow, firsts A181821, relatively prime A325131.
Equivalent sequence with prime(2*k) instead of prime(2^k): A297002.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@(2^primeMS[n]),{n,100}]
  • PARI
    a(n) = my(f=factor(n)); for(k=1, #f~, f[k,1] = prime(2^primepi(f[k,1]))); factorback(f); \\ Michel Marcus, May 20 2022
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A353397(n): return prod(prime(2**primepi(p))**e for p, e in factorint(n).items()) # Chai Wah Wu, May 20 2022

Formula

If n = prime(e_1)...prime(e_k), then a(n) = prime(2^(e_1))...prime(2^(e_k)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2^k)) = 1.90812936178871496289... . - Amiram Eldar, Dec 09 2022

A387111 Number of ways to choose a sequence of distinct positive integers, one in the initial interval of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 3, 1, 4, 0, 2, 2, 5, 0, 6, 3, 4, 0, 7, 0, 8, 0, 6, 4, 9, 0, 6, 5, 0, 0, 10, 1, 11, 0, 8, 6, 9, 0, 12, 7, 10, 0, 13, 2, 14, 0, 2, 8, 15, 0, 12, 2, 12, 0, 16, 0, 12, 0, 14, 9, 17, 0, 18, 10, 4, 0, 15, 3, 19, 0, 16, 4, 20, 0, 21, 11, 4, 0, 16, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 75 are (2,3,3), with initial intervals ({1,2},{1,2,3},{1,2,3}), with choices (1,2,3), (1,3,2), (2,1,3), (2,3,1), so a(75) = 4.
		

Crossrefs

Allowing repeated partitions gives A003963.
For constant instead of distinct we have A055396.
For multiset systems see A355529, A355744, A367771, set systems A367901-A367905.
For divisors we have A355739, zeros A355740, strict case of A355731.
For prime factors we have A355741, prime powers A355742, weakly increasing A355745.
For integer partitions we have A387110.
Positions of nonzero terms are A387112 (choosable).
Positions of 0 are A387134 (non-choosable).
A001414 adds up distinct prime divisors, counted by A001221.
A061395 gives greatest prime index.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Range/@prix[n]],UnsameQ@@#&]],{n,100}]

A324856 Numbers divisible by exactly one of their prime indices.

Original entry on oeis.org

2, 10, 14, 15, 22, 26, 34, 38, 45, 46, 50, 55, 58, 62, 70, 74, 82, 86, 94, 98, 105, 106, 118, 119, 122, 130, 134, 135, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 195, 202, 206, 207, 214, 218, 226, 230, 242, 250, 254, 255, 262, 266, 274, 275, 278, 285
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A324848(n) = 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If k is in A324846, then k*prime(k) is in the sequence. - Robert Israel, Mar 22 2019

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  22: {1,5}
  26: {1,6}
  34: {1,7}
  38: {1,8}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  55: {3,5}
  58: {1,10}
  62: {1,11}
  70: {1,3,4}
  74: {1,12}
  82: {1,13}
  86: {1,14}
  94: {1,15}
  98: {1,4,4}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= select(t -> n mod numtheory:-pi(t[1])=0, ifactors(n)[2]);
      nops(F)=1 and F[1][2]=1
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Mar 22 2019
  • Mathematica
    Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k/;Divisible[#,PrimePi[p]]]]==1&]

A324936 Number of unlabeled rooted trees with n vertices whose non-leaf terminal subtrees are all different.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 83, 189, 436, 1014, 2373, 5578, 13156, 31104, 73665, 174665, 414427, 983606, 2334488
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

The Matula-Goebel numbers of these trees are given by A324935.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    durt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[durt/@ptn]],UnsameQ@@Cases[#,{},{0,Infinity}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[durt[n]],{n,10}]

A353389 Create the sequence of all positive integers > 1 that are prime or whose prime shadow (A181819) is a divisor that is already in the sequence. Then remove all the primes.

Original entry on oeis.org

9, 36, 125, 225, 441, 1089, 1260, 1521, 1980, 2340, 2401, 2601, 2772, 3060, 3249, 3276, 3420, 4140, 4284, 4761, 4788, 5148, 5220, 5580, 5796, 6660, 6732, 7308, 7380, 7524, 7569, 7740, 7812, 7956, 8460, 8649, 8892, 9108, 9324, 9540, 10332, 10620, 10764, 10836
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
Said differently, these are nonprime numbers > 1 whose prime shadow is a divisor that is either a prime number or a number already in the sequence.

Examples

			The initial terms and their prime indices:
     9: {2,2}
    36: {1,1,2,2}
   125: {3,3,3}
   225: {2,2,3,3}
   441: {2,2,4,4}
  1089: {2,2,5,5}
  1260: {1,1,2,2,3,4}
  1521: {2,2,6,6}
  1980: {1,1,2,2,3,5}
		

Crossrefs

The first term that is not a perfect power A001597 is 1260.
Without the recursion we have A325755 (a superset), counted by A325702.
Before removing the primes we had A353393.
These partitions are counted by A353426 minus one.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A182850 and A323014 give frequency depth, counted by A225485 and A325280.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,2000],suQ[#]&&!PrimeQ[#]&]
Previous Showing 41-50 of 74 results. Next