cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A380217 Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.

Original entry on oeis.org

1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence.
The terms together with their prime indices begin:
     1: {}
    15: {2,3}
    42: {1,2,4}
    54: {1,2,2,2}
    75: {2,3,3}
    77: {4,5}
    95: {3,8}
    99: {2,2,5}
   100: {1,1,3,3}
   132: {1,1,2,5}
   182: {1,4,6}
   195: {2,3,6}
   221: {6,7}
   234: {1,2,2,6}
   245: {3,4,4}
		

Crossrefs

The case of equality is A325041, counted by A380218 = A028422 except n=3.
Without "plus one" we get A326149, counted by A057568, see A379733, A379734, A379735.
Double all terms to get A379319.
Partitions of this type are counted by A379320.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
  • PARI
    vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798
    isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025

Formula

a(n) = A379319(n)/2.

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]

A324771 Numbers divisible by at least one of their prime indices > 1.

Original entry on oeis.org

6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  12: {1,1,2}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  45: {2,2,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  55: {3,5}
  56: {1,1,1,4}
  60: {1,1,2,3}
  66: {1,2,5}
  72: {1,1,1,2,2}
  75: {2,3,3}
  78: {1,2,6}
  84: {1,1,2,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]

A379844 Squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 154, 157, 163, 165, 167, 173, 179, 181, 190, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Crossrefs

Squarefree case of A326149.
For nonprime instead of squarefree we have A326150.
The non-prime case is A326158.
Partitions of this type are counted by A379733, see A379735.
The even case is A379845, counted by A380221.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
A056239 adds up prime indices.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],SquareFreeQ[#]&&Divisible[Times@@prix[#],Plus@@prix[#]]&]

Formula

Satisfies A056239(a(n))|A003963(a(n)).

A379845 Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.

Original entry on oeis.org

2, 30, 154, 190, 390, 442, 506, 658, 714, 874, 1110, 1118, 1254, 1330, 1430, 1786, 1794, 1798, 1958, 2310, 2414, 2442, 2470, 2730, 2958, 3034, 3066, 3266, 3390, 3534, 3710, 3770, 3874, 3914, 4042, 4466, 4526, 4758, 4930, 5106, 5434, 5474, 5642, 6090, 6106
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
     2: {1}
    30: {1,2,3}
   154: {1,4,5}
   190: {1,3,8}
   390: {1,2,3,6}
   442: {1,6,7}
   506: {1,5,9}
   658: {1,4,15}
   714: {1,2,4,7}
   874: {1,8,9}
  1110: {1,2,3,12}
		

Crossrefs

Even squarefree case of A326149.
For nonprime instead of even we have A326158.
Squarefree case of A379319.
Even case of A379844.
Partitions of this type are counted by A380221, see A379733, A379735.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
A056239 adds up prime indices.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Select[Range[2,1000],EvenQ[#]&&SquareFreeQ[#]&&Divisible[Times@@prix[#],Plus@@prix[#]]&]

A380216 Numbers whose prime indices have (product)/(sum) equal to an integer > 1.

Original entry on oeis.org

49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
   49: {4,4}
   63: {2,2,4}
   65: {3,6}
   81: {2,2,2,2}
  125: {3,3,3}
  150: {1,2,3,3}
  154: {1,4,5}
  165: {2,3,5}
  169: {6,6}
  190: {1,3,8}
  198: {1,2,2,5}
  259: {4,12}
  273: {2,4,6}
  333: {2,2,12}
  351: {2,2,2,6}
  361: {8,8}
  364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
		

Crossrefs

The fraction A003963(n)/A056239(n) reduces to A326153(n)/A326154(n).
The non-proper version is A326149, superset of A326150.
Also a superset of A326151.
The squarefree case is A326158 without first term.
Partitions of this type are counted by A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379735, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]

A340829 Number of strict integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 3, 0, 4, 3, 4, 0, 8, 0, 10, 0, 11, 12, 19, 0, 0, 22, 0, 0, 46, 23, 56, 0, 64, 66, 86, 0, 125, 104, 135, 0, 196, 111, 230, 0, 0, 274, 353, 0, 0, 0, 563, 0, 687, 0, 974, 0, 1039, 1052, 1290, 0, 1473, 1511, 0, 0, 2707, 1614, 2664, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. The Heinz numbers of these partitions are squarefree numbers divisible by the sum of their prime indices.

Examples

			The a(6) = 1 through a(19) = 10 partitions (empty columns indicated by dots, A = 10, B = 11):
  321  43   .  .  631   65    .  76    941   A32    .  A7     .  B8
       421        4321  542      643   6431  6432      764       865
                        5321     652   7421  9321      872       874
                                 6421        54321     971       982
                                                       7532      A81
                                                       7541      8542
                                                       7631      8632
                                                       74321     8641
                                                                 8731
                                                                 85321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
Positions of zeros are 2 and A013929.
The non-strict version is A330950 (A324851) q.v.
A000009 counts strict partitions.
A003963 multiplies together prime indices.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A057568 counts partitions whose product is divisible by their sum (A326149).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A112798 lists the prime indices of each positive integer.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A324925 counts partitions whose Heinz number is divisible by their product.
A326842 counts partitions whose parts and length all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A330952 counts partitions whose Heinz number is divisible by all parts.
A340828 counts strict partitions with length divisible by maximum.
A340830 counts strict partitions with parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@Prime/@#,n]&]],{n,30}]

A379318 Odd numbers whose product of prime indices is a multiple of their sum of prime indices.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2025

Keywords

Comments

Contains all odd primes.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
     2: {1}         53: {16}           109: {29}
     3: {2}         59: {17}           113: {30}
     5: {3}         61: {18}           125: {3,3,3}
     7: {4}         63: {2,2,4}        127: {31}
     9: {2,2}       65: {3,6}          131: {32}
    11: {5}         67: {19}           137: {33}
    13: {6}         71: {20}           139: {34}
    17: {7}         73: {21}           149: {35}
    19: {8}         79: {22}           150: {1,2,3,3}
    23: {9}         81: {2,2,2,2}      151: {36}
    29: {10}        83: {23}           154: {1,4,5}
    30: {1,2,3}     84: {1,1,2,4}      157: {37}
    31: {11}        89: {24}           163: {38}
    37: {12}        97: {25}           165: {2,3,5}
    41: {13}       101: {26}           167: {39}
    43: {14}       103: {27}           169: {6,6}
    47: {15}       107: {28}           173: {40}
    49: {4,4}      108: {1,1,2,2,2}    179: {41}
		

Crossrefs

Including evens gives A326149, counted by A057568.
For nonprime instead of odd we get A326150.
For even instead of odd we get A379319, counted by A379320.
Partitions of this type are counted by A379734, strict A379735, see A379733.
For squarefree instead of odd we get A379844, even case A379845.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],OddQ[#]&&Divisible[Times@@prix[#],Total[prix[#]]]&]

A335403 If n = Product_{i=1..k} p_i^e_i then a(n) = Sum_{i=1..k} e_i * prime(p_i).

Original entry on oeis.org

0, 3, 5, 6, 11, 8, 17, 9, 10, 14, 31, 11, 41, 20, 16, 12, 59, 13, 67, 17, 22, 34, 83, 14, 22, 44, 15, 23, 109, 19, 127, 15, 36, 62, 28, 16, 157, 70, 46, 20, 179, 25, 191, 37, 21, 86, 211, 17, 34, 25, 64, 47, 241, 18, 42, 26, 72, 112, 277, 22, 283, 130, 27, 18
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2020

Keywords

Comments

Totally additive with a(p) = prime(p) for p prime.

Examples

			The prime factors of 18 are 2 * 3 * 3, so a(18) = prime(2) + prime(3) + prime(3) = 13.
		

Crossrefs

Partitions into prime parts are A000607.
Sum of prime factors is A001414.
Primes of prime index are A006450.
Sum of prime indices is A056239.
The multiplicative version is A064988.
Products of primes of prime index are A076610.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*Prime[p]]],{n,30}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,1])*f[k,2]); \\ Michel Marcus, Jun 07 2020

Extensions

Edited by N. J. A. Sloane, Jun 20 2020 following a suggestion from Bernard Schott.
Previous Showing 21-29 of 29 results.