cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A325035 Product of sums of the multisets of prime indices of each prime index of 2 * n + 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 2, 4, 3, 2, 4, 4, 1, 4, 5, 3, 4, 4, 3, 6, 5, 2, 5, 4, 4, 4, 6, 3, 7, 5, 2, 6, 8, 4, 5, 6, 4, 6, 6, 1, 9, 8, 4, 5, 6, 5, 6, 6, 3, 7, 6, 4, 6, 10, 4, 6, 8, 3, 8, 9, 6, 8, 11, 5, 5, 6, 2, 7, 8, 5, 9, 8, 4, 7, 6, 4, 10, 12, 4, 8, 9, 6, 8, 9, 3
Offset: 0

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			91 has prime indices {4,6} with prime indices {{1,1},{1,2}} with sums {2,3} with product a(45) = 6.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Plus@@@primeMS/@primeMS[n],{n,1,200,2}]

Formula

Fully multiplicative with a(prime(n)) = A056239(n), restricted to odd n.

A379682 Least number whose prime indices have sum + product = n.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 10, 7, 14, 11, 15, 13, 26, 17, 25, 19, 33, 23, 35, 29, 58, 31, 51, 37, 74, 41, 65, 43, 69, 47, 85, 53, 105, 59, 93, 61, 122, 67, 115, 71, 123, 73, 145, 79, 158, 83, 141, 89, 161, 97, 185, 101, 177, 103, 205, 107, 214, 109, 201, 113, 226, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 05 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The positions of 11 in A379681 are: 15, 22, 56, 72, 160, 384, 1024, so a(11) = 15.
		

Crossrefs

Position of first appearance of n in A379681.
The subtraction A325036 takes the following values:
- zero: A301987, counted by A001055
- negative: A325037, counted by A114324
- positive: A325038, counted by A096276 shifted right
- negative one: A325041, counted by A028422
- one: A325042, counted by A001055 shifted right
- nonnegative: A325044, counted by A096276
- nonpositive: A379721, counted by A319005
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sp=Table[Plus@@prix[n]+Times@@prix[n],{n,1000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[sp,n][[1,1]],{n,mnrm[sp]}]

A380344 Product of prime indices minus sum of prime factors of n.

Original entry on oeis.org

1, -1, -1, -3, -2, -3, -3, -5, -2, -4, -6, -5, -7, -5, -2, -7, -10, -4, -11, -6, -2, -8, -14, -7, -1, -9, -1, -7, -19, -4, -20, -9, -4, -12, 0, -6, -25, -13, -4, -8, -28, -4, -29, -10, 1, -16, -32, -9, 2, -3, -6, -11, -37, -3, -1, -9, -6, -21, -42, -6, -43
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.

Examples

			72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 4 - 12 = -8.
		

Crossrefs

Positions of 0 are A331384.
For plus instead of minus we have A380409.
Positions of positives are A380410.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@prix[n]-Plus@@Prime/@prix[n],{n,100}]

Formula

a(n) = A003963(n) - A001414(n).

A357139 Take the weakly increasing prime indices of each prime index of n, then concatenate.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 5, 1, 3, 4, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 6, 1, 1, 1, 1, 4, 3, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:
   2:
   3:  1
   4:
   5:  2
   6:  1
   7:  1 1
   8:
   9:  1 1
  10:  2
  11:  3
  12:  1
  13:  1 2
For example, the weakly increasing prime indices of 105 are (2,3,4), with prime indices ((1),(2),(1,1)), so row 105 is (1,2,1,1).
		

Crossrefs

Row lengths are A302242.
Positions of strict rows are A302505.
Positions of constant rows are A302593.
Row sums are A325033, products A325032.
The version for standard compositions is A357135, rank A357134.
A000961 lists prime powers.
A003963 multiples prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Join@@primeMS/@primeMS[n],{n,100}]

A380345 a(n) = n + sum of prime indices of n.

Original entry on oeis.org

1, 3, 5, 6, 8, 9, 11, 11, 13, 14, 16, 16, 19, 19, 20, 20, 24, 23, 27, 25, 27, 28, 32, 29, 31, 33, 33, 34, 39, 36, 42, 37, 40, 42, 42, 42, 49, 47, 47, 46, 54, 49, 57, 51, 52, 56, 62, 54, 57, 57, 60, 60, 69, 61, 63, 63, 67, 69, 76, 67, 79, 74, 71, 70, 74, 74, 86
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239.

Examples

			72 has prime indices {1,1,1,2,2}, so a(72) = 72 + 7 = 79.
		

Crossrefs

For factors instead of indices we have A075254.
For minus instead of plus we have A178503.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[n+Total[prix[n]],{n,100}]

Formula

a(n) = n + A056239(n).

A380409 Product of prime indices plus sum of prime factors.

Original entry on oeis.org

1, 3, 5, 5, 8, 7, 11, 7, 10, 10, 16, 9, 19, 13, 14, 9, 24, 12, 27, 12, 18, 18, 32, 11, 19, 21, 17, 15, 39, 16, 42, 11, 24, 26, 24, 14, 49, 29, 28, 14, 54, 20, 57, 20, 23, 34, 62, 13, 30, 21, 34, 23, 69, 19, 31, 17, 38, 41, 76, 18, 79, 44, 29, 13, 36, 26, 86
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.

Examples

			72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 12 + 4 = 16.
		

Crossrefs

For factors instead of indices we have A075254.
For indices instead of factors we have A379681.
For minus instead of plus we have A380344, zeros A331384.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Prime/@prix[n]]+Times@@prix[n],{n,100}]

Formula

a(n) = A003963(n) + A001414(n).

A325031 Numbers divisible by all prime indices of their prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 32, 33, 36, 38, 40, 42, 46, 48, 49, 50, 52, 53, 54, 56, 57, 60, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 84, 87, 90, 92, 96, 98, 99, 100, 104, 106, 108, 112, 114, 120, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it does not belong to the sequence.

Examples

			The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  10: {{},{2}}
  12: {{},{},{1}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
  33: {{1},{3}}
  36: {{},{},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]

A357458 First differences of A325033 = "Sum of sums of the multiset of prime indices of each prime index of n.".

Original entry on oeis.org

0, 1, -1, 2, -1, 1, -2, 2, 0, 1, -2, 2, -1, 1, -3, 4, -2, 1, -1, 1, 0, 1, -3, 3, -1, 0, -1, 2, -1, 2, -5, 4, 0, 0, -2, 2, -1, 1, -2, 4, -3, 2, -2, 1, 0, 1, -4, 3, 0, 1, -2, 1, -1, 2, -3, 2, 0, 3, -4, 2, 0, -1, -4, 5, -1, 4, -4, 1, -1, 1, -3, 4, -2, 1, -2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			We have A325033(5) - A325033(4) = 2 - 0, so a(4) = 2.
		

Crossrefs

The partial sums are A325033, which has row-products A325032.
The version for standard compositions is A357187.
A000961 lists prime powers.
A003963 multiples prime indices.
A005117 lists squarefree numbers.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Differences[Table[Plus@@Join@@primeMS/@primeMS[n],{n,100}]]

Formula

a(n) = A325033(n + 1) - A325033(n).

A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.

Original entry on oeis.org

18, 60, 168, 216, 400, 528, 1248, 2240, 2880, 3264, 7296, 14080, 17664, 25088, 32256, 41472, 44544, 66560, 95232, 153600, 227328, 315392, 348160, 405504, 503808, 1056768, 1556480, 2310144, 2981888, 3833856, 5210112, 6881280, 7536640, 7929856, 8847360, 11599872
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).

Examples

			The sequence of terms together with their prime indices begins:
     18: {1,2,2}
     60: {1,1,2,3}
    168: {1,1,1,2,4}
    216: {1,1,1,2,2,2}
    400: {1,1,1,1,3,3}
    528: {1,1,1,1,2,5}
   1248: {1,1,1,1,1,2,6}
   2240: {1,1,1,1,1,1,3,4}
   2880: {1,1,1,1,1,1,2,2,3}
   3264: {1,1,1,1,1,1,2,7}
   7296: {1,1,1,1,1,1,1,2,8}
  14080: {1,1,1,1,1,1,1,1,3,5}
  17664: {1,1,1,1,1,1,1,1,2,9}
  25088: {1,1,1,1,1,1,1,1,1,4,4}
  32256: {1,1,1,1,1,1,1,1,1,2,2,4}
  41472: {1,1,1,1,1,1,1,1,1,2,2,2,2}
  44544: {1,1,1,1,1,1,1,1,1,2,10}
  66560: {1,1,1,1,1,1,1,1,1,1,3,6}
  95232: {1,1,1,1,1,1,1,1,1,1,2,11}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],And[PrimeOmega[#]>2,Times@@primeMS[#]==Total[primeMS[#]]-1]&]

Formula

a(n) = 2 * A301988(n).

Extensions

More terms from Jinyuan Wang, Jun 27 2020

A357188 Numbers with (WLOG adjacent) prime indices x <= y such that the greatest prime factor of x is greater than the least prime factor of y.

Original entry on oeis.org

35, 65, 70, 95, 105, 130, 140, 143, 145, 169, 175, 185, 190, 195, 209, 210, 215, 245, 247, 253, 260, 265, 280, 285, 286, 290, 305, 315, 319, 323, 325, 338, 350, 355, 370, 377, 380, 385, 390, 391, 395, 407, 418, 420, 429, 430, 435, 445, 455, 473, 475, 481, 490
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms and corresponding multisets of multisets:
   35: {{2},{1,1}}
   65: {{2},{1,2}}
   70: {{},{2},{1,1}}
   95: {{2},{1,1,1}}
  105: {{1},{2},{1,1}}
  130: {{},{2},{1,2}}
  140: {{},{},{2},{1,1}}
  143: {{3},{1,2}}
  145: {{2},{1,3}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  185: {{2},{1,1,2}}
		

Crossrefs

These are the positions of non-weakly increasing rows in A357139.
A000961 lists prime powers.
A003963 multiples prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MatchQ[primeMS[#],{_,x_,y_,_}/;Max@@primeMS[x]>Min@@primeMS[y]]&]
    Select[Range[100],!LessEqual@@Join@@primeMS/@primeMS[#]&]
Previous Showing 11-20 of 20 results.