cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A339662 Greatest gap in the partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 2, 4, 0, 5, 3, 1, 0, 6, 0, 7, 2, 3, 4, 8, 0, 2, 5, 1, 3, 9, 0, 10, 0, 4, 6, 2, 0, 11, 7, 5, 2, 12, 3, 13, 4, 1, 8, 14, 0, 3, 2, 6, 5, 15, 0, 4, 3, 7, 9, 16, 0, 17, 10, 3, 0, 5, 4, 18, 6, 8, 2, 19, 0, 20, 11, 1, 7, 3, 5, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the index of the greatest prime, up to the greatest prime index of n, not dividing n. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Positions of first appearances are A000040.
Positions of 0's are A055932.
The version for positions of 1's in reversed binary expansion is A063250.
The prime itself (not just the index) is A079068.
The version for crank is A257989.
The minimal instead of maximal version is A257993.
The version for greatest difference is A286469 or A286470.
Positive integers by Heinz weight and image are counted by A339737.
Positions of 1's are A339886.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[maxgap[primeMS[n]],{n,100}]

Formula

a(n) = A000720(A079068(n)).

A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 2, 5, 12, 14, 19, 35, 38, 55, 83, 107, 137, 209, 252, 359, 462, 612, 757, 1032, 1266, 1649, 2050, 2617, 3210, 4111, 4980, 6262, 7659, 9479, 11484, 14224, 17132, 20962, 25259, 30693, 36744, 44517, 53043, 63850, 75955, 90943, 107721, 128485
Offset: 0

Views

Author

Gus Wiseman, May 14 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The a(0) = 0 through a(9) = 12 partitions:
  .  .  .  (21)  .  .  (42)    (421)   (431)    (63)
                       (321)   (3211)  (521)    (432)
                       (2211)          (3221)   (531)
                                       (4211)   (621)
                                       (32111)  (3321)
                                                (4221)
                                                (4311)
                                                (5211)
                                                (32211)
                                                (42111)
                                                (222111)
                                                (321111)
		

Crossrefs

Negating both sides gives A383507, ranks A383532.
These partitions are ranked by A383531.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A239455 counts Look-and-Say partitions, complement A351293.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A381431 is the section-sum transform, union A381432, complement A381433.
A383534 gives 0-prepended differences by rank, see A325351.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}]

Formula

These partitions have Heinz numbers A130092 /\ A383513.

A325357 Number of integer partitions of n whose augmented differences are strictly increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 5, 5, 4, 5, 6, 5, 7, 7, 7, 7, 9, 7, 10, 10, 8, 11, 13, 10, 13, 14, 12, 14, 17, 13, 17, 19, 17, 18, 22, 19, 22, 24, 21, 24, 28, 24, 29, 30, 28, 31, 35, 30, 35, 40, 36
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325395.

Examples

			The a(28) = 10 partitions:
  (28)
  (18,10)
  (17,11)
  (16,12)
  (15,13)
  (14,14)
  (12,10,6)
  (11,10,7)
  (10,10,8)
  (8,8,7,5)
For example, the augmented differences of (8,8,7,5) are (1,2,3,5), which are strictly increasing.
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A355525 Minimal difference between adjacent prime indices of n, or k if n is the k-th prime.

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 2, 5, 0, 6, 3, 1, 0, 7, 0, 8, 0, 2, 4, 9, 0, 0, 5, 0, 0, 10, 1, 11, 0, 3, 6, 1, 0, 12, 7, 4, 0, 13, 1, 14, 0, 0, 8, 15, 0, 0, 0, 5, 0, 16, 0, 2, 0, 6, 9, 17, 0, 18, 10, 0, 0, 3, 1, 19, 0, 7, 1, 20, 0, 21, 11, 0, 0, 1, 1, 22, 0, 0, 12
Offset: 2

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 9842 are {1,4,8,12}, with differences (3,4,4), so a(9842) = 3.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are 4 followed by A000040.
Positions of 0's are A013929, see also A130091.
Triangle A238709 counts m such that A056239(m) = n and a(m) = k.
For maximal instead of minimal difference we have A286470.
Positions of terms > 1 are A325160, also A325161.
See also A355524, A355528.
Positions of 1's are A355527.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A238352 counts partitions by fixed points, rank statistic A352822.
A287352, A355533, A355534, A355536 list the differences of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],PrimePi[n],Min@@Differences[primeMS[n]]],{n,2,100}]

A355533 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime(k), then row n is just (k).

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 0, 2, 5, 0, 1, 6, 3, 1, 0, 0, 0, 7, 1, 0, 8, 0, 2, 2, 4, 9, 0, 0, 1, 0, 5, 0, 0, 0, 3, 10, 1, 1, 11, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 12, 7, 4, 0, 0, 2, 13, 1, 2, 14, 0, 4, 0, 1, 8, 15, 0, 0, 0, 1, 0, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices before taking differences is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, with no effect on the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       1
   3:    (2)       2
   4:   (1,1)      0
   5:    (3)       3
   6:   (1,2)      1
   7:    (4)       4
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       5
  12:  (1,1,2)    0 1
  13:    (6)       6
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
For example, the prime indices of 24 are (1,1,1,2), with differences (0,0,1).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row sums are A243056.
The version for prime indices prepended by 0 is A287352.
Constant rows have indices A325328.
Strict rows have indices A325368.
Number of distinct terms in each row are 1 if prime, otherwise A355523.
Row minima are A355525, augmented A355531.
Row maxima are A355526, augmented A355535.
The augmented version is A355534, Heinz number A325351.
The version with prime-indexed rows empty is A355536, Heinz number A325352.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],{PrimePi[n]},Differences[primeMS[n]]],{n,2,30}]

Formula

Row lengths are 1 or A001222(n) - 1 depending on whether n is prime.

A257989 The crank of the partition having Heinz number n.

Original entry on oeis.org

-1, 2, -2, 3, 0, 4, -3, 2, 0, 5, -2, 6, 0, 3, -4, 7, 1, 8, -1, 4, 0, 9, -3, 3, 0, 2, -1, 10, 1, 11, -5, 5, 0, 4, -2, 12, 0, 6, -3, 13, 1, 14, -1, 3, 0, 15, -4, 4, 1, 7, -1, 16, 2, 5, -2, 8, 0, 17, -1, 18, 0, 4, -6, 6, 1, 19, -1, 9, 1, 20, -3, 21, 0, 3, -1, 5, 1, 22, -4, 2, 0, 23, -1, 7, 0, 10, -2, 24, 2, 6, -1
Offset: 2

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's).
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n.

Examples

			a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2.
a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4.
From _Gus Wiseman_, Apr 05 2021: (Start)
The partitions (center) with each Heinz number (left), and the corresponding terms (right):
   2:    (1)    -> -1
   3:    (2)    ->  2
   4:   (1,1)   -> -2
   5:    (3)    ->  3
   6:   (2,1)   ->  0
   7:    (4)    ->  4
   8:  (1,1,1)  -> -3
   9:   (2,2)   ->  2
  10:   (3,1)   ->  0
  11:    (5)    ->  5
  12:  (2,1,1)  -> -2
  13:    (6)    ->  6
  14:   (4,1)   ->  0
  15:   (3,2)   ->  3
  16: (1,1,1,1) -> -4
(End)
		

Crossrefs

Indices of zeros are A342192.
A001522 counts partitions of crank 0.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else  end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150);
  • Mathematica
    B[n_] := Module[{nn, j, m}, nn =  FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
    b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]];
    c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct];
    a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]];
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Apr 25 2017, after Emeric Deutsch *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Table[ck[primeMS[n]],{n,2,30}] (* Gus Wiseman, Apr 05 2021 *)

A325358 Number of integer partitions of n whose augmented differences are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 11, 13, 14, 15, 18, 20, 21, 24, 26, 28, 33, 36, 38, 43, 46, 49, 56, 60, 63, 71, 76, 80, 90, 96, 100, 112, 120, 125, 139, 149, 155, 171, 183, 190, 208, 223, 232, 252, 269, 280, 304, 325, 338, 364, 387, 403
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325396.

Examples

			The a(1) = 1 through a(11) = 6 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (10)   (11)
            (21)  (31)  (41)  (42)  (52)   (62)   (63)   (73)   (83)
                              (51)  (61)   (71)   (72)   (82)   (92)
                                    (421)  (521)  (81)   (91)   (101)
                                                  (621)  (631)  (731)
                                                         (721)  (821)
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A355531 Minimal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 1, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 1, 1, 1, 1, 10, 1, 11, 1, 2, 1, 2, 1, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 1, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 1, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 1, 1, 2, 1, 22, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 1.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are A008578.
Positions of 1's are 2 followed by A013929.
The non-augmented maximal version is A286470, also A355526.
The non-augmented version is A355524, also A355525.
Row minima of A355534, which has Heinz number A325351.
The maximal version is A355535.
A001222 counts prime indices.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A325359 Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.

Original entry on oeis.org

9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

Also Heinz numbers of integer partitions that are not hooks but whose augmented differences are hooks, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k), and a hook is a partition of the form (n,1,1,...,1). The enumeration of these partitions by sum is given by A325459.

Examples

			The sequence of terms together with their prime indices begins:
     9: {2,2}
    18: {1,2,2}
    25: {3,3}
    27: {2,2,2}
    36: {1,1,2,2}
    49: {4,4}
    50: {1,3,3}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    81: {2,2,2,2}
    98: {1,4,4}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   121: {5,5}
   125: {3,3,3}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   169: {6,6}
   196: {1,1,4,4}
   200: {1,1,1,3,3}
		

Crossrefs

Positions of 2's in A325355.
Numbers n such that n does not belong to A093641 but A325351(n) does.

Programs

  • Maple
    N:= 1000: # to get terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]):
    B:= map(proc(p) local y;  seq(p^y, y=2..floor(log[p](N))) end proc, P):
    sort(map(proc(t) local z;  seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
  • Mathematica
    Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - Amiram Eldar, Sep 30 2020

A342522 Heinz numbers of integer partitions with constant (equal) first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 2093 are {4,6,9}, with first quotients (3/2,3/2), so 2093 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A072774.
The version counting strict divisor chains is A169594.
For differences instead of quotients we have A325328 (count: A049988).
These partitions are counted by A342496 (strict: A342515, ordered: A342495).
The distinct instead of equal version is A342521.
A000005 count constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Previous Showing 21-30 of 48 results. Next