cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320510.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]

A358169 Row n lists the first differences plus one of the prime indices of n with 1 prepended.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 4, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 2, 6, 1, 4, 2, 2, 1, 1, 1, 1, 7, 1, 2, 1, 8, 1, 1, 3, 2, 3, 1, 5, 9, 1, 1, 1, 2, 3, 1, 1, 6, 2, 1, 1, 1, 1, 4, 10, 1, 2, 2, 11, 1, 1, 1, 1, 1, 2, 4, 1, 7, 3, 2, 1, 1, 2, 1, 12, 1, 8, 2, 5, 1, 1, 1, 3
Offset: 2

Views

Author

Gus Wiseman, Nov 01 2022

Keywords

Comments

Every nonempty composition appears as a row exactly once.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Here this multiset is regarded as a sequence in weakly increasing order.
Also the reversed augmented differences of the integer partition with Heinz number n, where the augmented differences aug(q) of a sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k, and the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The non-reversed version is A355534.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 1 2
   7: 4
   8: 1 1 1
   9: 2 1
  10: 1 3
  11: 5
  12: 1 1 2
  13: 6
  14: 1 4
  15: 2 2
  16: 1 1 1 1
  17: 7
  18: 1 2 1
  19: 8
  20: 1 1 3
		

Crossrefs

Row-lengths are A001222.
The first term of each row is A055396.
Row-sums are A252464.
The rows appear to be ranked by A253566.
Another variation is A287352.
Constant rows have indices A307824.
The Heinz numbers of the rows are A325351.
Strict rows have indices A325366.
Row-minima are A355531, also A355524 and A355525.
Row-maxima are A355532, non-augmented A286470, also A355526.
Reversing rows gives A355534.
The non-augmented version A355536, also A355533.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[Prepend[primeMS[n],1]]+1,{n,30}]

A325392 Number of permutations of the multiset of prime factors of n whose first part is not 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 6, 1, 1, 3, 0, 2, 4, 1, 1, 2, 4, 1, 4, 1, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 6, 2, 1, 2, 1, 1, 9, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 1, 4, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(90) = 9 permutations of {2,3,3,5} not starting with 2:
  3 2 3 5
  3 2 5 3
  3 3 2 5
  3 3 5 2
  3 5 2 3
  3 5 3 2
  5 2 3 3
  5 3 2 3
  5 3 3 2
		

Crossrefs

Number of times n appears in A325390.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],#=={}||First[#]>1&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From code in A008480
    A325392(n) = if(n%2, A008480(n), A008480(n)-A008480(n/2)); \\ Antti Karttunen, Dec 06 2021

Formula

If n is odd, a(n) = A008480(n). If n is even, a(n) = A008480(n) - A008480(n/2).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021

A325403 Number of permutations of the multiset of prime factors of 2n whose first part is not 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 4, 0, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 0, 4, 1, 4, 4, 1, 1, 4, 1, 1, 6, 1, 1, 9, 1, 1, 1, 2, 3, 4, 1, 1, 6, 4, 1, 4, 1, 1, 8, 1, 1, 9, 0, 4, 6, 1, 1, 4, 6, 1, 5, 1, 1, 9, 1, 4, 6, 1, 1, 4, 1, 1, 8, 4, 1, 4, 1, 1, 18, 4, 1, 4, 1, 4, 1, 1, 3, 9, 4, 1, 6, 1, 1, 18
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(60) = 8 permutations of {2,2,2,3,5} whose first part is not 2:
  3 2 2 2 5
  3 2 2 5 2
  3 2 5 2 2
  3 5 2 2 2
  5 2 2 2 3
  5 2 2 3 2
  5 2 3 2 2
  5 3 2 2 2
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[Table@@@FactorInteger[2*n]]],First[#]!=2&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ After code in A008480
    A325403(n) = (A008480(n+n)-A008480(n)); \\ Antti Karttunen, Dec 06 2021

Formula

a(n) = A008480(2n) - A008480(n) = A325392(2n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021

A325363 Heinz numbers of integer partitions into nonzero triangular numbers A000217.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 16, 20, 25, 26, 29, 32, 40, 47, 50, 52, 58, 64, 65, 73, 80, 94, 100, 104, 107, 116, 125, 128, 130, 145, 146, 151, 160, 169, 188, 197, 200, 208, 214, 232, 235, 250, 256, 257, 260, 290, 292, 302, 317, 320, 325, 338, 365, 376, 377, 394, 397
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A007294.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    5: {3}
    8: {1,1,1}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   20: {1,1,3}
   25: {3,3}
   26: {1,6}
   29: {10}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   47: {15}
   50: {1,3,3}
   52: {1,1,6}
   58: {1,10}
   64: {1,1,1,1,1,1}
   65: {3,6}
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    trgs=Table[n*(n+1)/2,{n,Sqrt[2*PrimePi[nn]]}];
    Select[Range[nn],SubsetQ[trgs,primeMS[#]]&]

A358171 The a(n)-th composition in standard order (A066099) is the first differences plus one of the prime indices of n (A112798).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 0, 6, 0, 8, 2, 7, 0, 5, 0, 12, 4, 16, 0, 14, 1, 32, 3, 24, 0, 10, 0, 15, 8, 64, 2, 13, 0, 128, 16, 28, 0, 20, 0, 48, 6, 256, 0, 30, 1, 9, 32, 96, 0, 11, 4, 56, 64, 512, 0, 26, 0, 1024, 12, 31, 8, 40, 0, 192, 128, 18, 0, 29, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 36 are {1,1,2,2}, with first differences plus one (1,2,1), which is the 13th composition in standard order, so a(36) = 13.
		

Crossrefs

See link for sequences related to standard compositions.
Prepend 1 to indices: A253566 (cf. A358169), inverse A253565 (cf. A242628).
Taking Heinz number instead of standard composition number gives A325352.
These compositions minus one are listed by A355536, sums A243055.
A001222 counts prime indices, distinct A001221.
A066099 lists standard compositions, lengths A000120, sums A070939.
A112798 lists prime indices, sum A056239.
A355534 = augmented diffs. of rev. prime indices, Heinz numbers A325351.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Differences[primeMS[n]]+1],{n,100}]
Previous Showing 11-16 of 16 results.