cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Crossrefs

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A325544 Number of nodes in the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 12, 15, 18, 22, 26, 30, 34, 38, 42, 47, 51, 55, 60, 64, 69, 74, 79, 84, 89, 95, 100, 106, 111, 116, 122, 127, 132, 138, 143, 149, 155, 160, 165, 171, 177, 182, 188, 193, 199, 206, 212, 218, 224, 230, 237, 243, 249, 254, 261, 268, 274, 280
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also one plus the number of factors in the factorization of n! into factors q(i) = prime(i)/i. For example, the q-factorization of 7! is 7! = q(1)^9 * q(2)^3 * q(3) * q(4), with 14 = a(7) - 1 factors.

Examples

			Matula-Goebel trees of the first 9 factorial number are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of nodes is the number of o's plus the number of brackets, giving {1,1,2,4,6,9,12,15,18}, as required.
		

Crossrefs

Programs

  • Mathematica
    mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]];
    Table[mgwt[n!],{n,0,100}]

Formula

For n > 1, a(n) = 1 - n + Sum_{k = 1..n} A061775(k).

A325704 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the numerator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 7, 1, 5, 1, 25, 2, 4, 1, 2, 1, 13, 13, 121, 1, 7, 1, 721, 3, 49, 1, 5, 1, 5, 61, 5041, 5, 3, 1, 40321, 361, 19, 1, 37, 1, 241, 7, 362881, 1, 9, 1, 4, 2521, 1441, 1, 5, 7, 73, 20161, 3628801, 1, 8, 1, 39916801, 25, 6, 121, 181, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the numerator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Numerator
  • PARI
    A325704(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/(primepi(f[i, 1])!))); }; \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A318573(A325709(n)).

A325510 Number of non-isomorphic multiset partitions of the multiset of prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 7, 16, 98, 269, 1397, 7582, 70520, 259906, 1677259, 5229112, 44726100, 666355170, 4917007185, 18459879921
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 multiset partitions:
  {{1}}  {{12}}    {{1222}}        {{12333}}
         {{1}{2}}  {{1}{222}}      {{1}{2333}}
                   {{12}{22}}      {{12}{333}}
                   {{2}{122}}      {{13}{233}}
                   {{1}{2}{22}}    {{3}{1233}}
                   {{2}{2}{12}}    {{33}{123}}
                   {{1}{2}{2}{2}}  {{1}{2}{333}}
                                   {{1}{23}{33}}
                                   {{1}{3}{233}}
                                   {{3}{12}{33}}
                                   {{3}{13}{23}}
                                   {{3}{3}{123}}
                                   {{1}{1}{1}{23}}
                                   {{1}{2}{3}{33}}
                                   {{1}{3}{3}{23}}
                                   {{1}{2}{3}{3}{3}}
		

Crossrefs

Programs

  • PARI
    \\ Requires C(sig) from A318285.
    a(n)={if(n<2, 1, my(f=factor(n!)[,2], sig=vector(vecmax(f))); for(i=1, #f, sig[f[i]]++); C(sig))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(n!).
a(n) = A318285(A181819(n!)) = A318285(A325508(n)). - Andrew Howroyd, Jan 17 2023

Extensions

a(9)-a(17) from Andrew Howroyd, Jan 17 2023

A325511 Numbers whose prime signature is that of a factorial number.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101, 103, 104, 106
Offset: 1

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

A181819(a(n)) belongs to A325508.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
  26: {1,6}
  29: {10}
  31: {11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30],MemberQ[Table[Sort[Last/@FactorInteger[k!]],{k,#}],Sort[Last/@FactorInteger[#]]]&]

A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
        F:= ifactors(n)[2];
        denom(add(t[2]/numtheory:-pi(t[1])!,t=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2024
  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator

Formula

a(n) = A318574(A325709(n)).

A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 9, 25, 49, 77, 121, 125, 169, 221, 245, 289, 323, 343, 361, 375, 437, 529, 841, 899, 961, 1331, 1369, 1517, 1681, 1763, 1849, 1859, 2021, 2197, 2209, 2401, 2773, 2809, 2873, 3127, 3481, 3721, 3757, 4087, 4489, 4757, 4913, 5041, 5183, 5329, 5929, 6137, 6241
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    77: {4,5}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   221: {6,7}
   245: {3,4,4}
   289: {7,7}
   323: {7,8}
   343: {4,4,4}
   361: {8,8}
   375: {2,3,3,3}
   437: {8,9}
   529: {9,9}
   841: {10,10}
   899: {10,11}
   961: {11,11}
For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Previous Showing 11-20 of 20 results.