cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A353866 Heinz numbers of rucksack partitions. Every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
The sequence contains 18 because its prime-power divisors {1,2,3,9} have prime indices {}, {1}, {2}, {2,2} with distinct sums {0,1,2,4}. On the other hand, 12 is not in the sequence because {2} and {1,1} have the same sum.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
These partitions are counted by A353864.
The complete case is A353867, counted by A353865.
The complement is A354583.
A000041 counts partitions, strict A000009.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Select[msubs[primeMS[#]],SameQ@@#&]&]

A364346 Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 5, 5, 8, 9, 11, 11, 16, 16, 20, 20, 25, 30, 34, 38, 42, 50, 58, 64, 73, 80, 90, 105, 114, 128, 148, 158, 180, 201, 220, 241, 277, 306, 333, 366, 404, 447, 497, 544, 592, 662, 708, 797, 861, 954, 1020, 1131, 1226, 1352, 1456, 1600
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2023

Keywords

Examples

			The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14):
  1   2   3   4    5    6    7    8    9     A    B     C     D     E
              31   32   51   43   53   54    64   65    75    76    86
                   41        52   62   72    73   74    93    85    95
                             61   71   81    82   83    A2    94    A4
                                       531   91   92    B1    A3    B3
                                                  A1    543   B2    C2
                                                  641   732   C1    D1
                                                  731   741   652   851
                                                        831   751   932
                                                              832   941
                                                              931   A31
		

Crossrefs

For subsets of {1..n} we have A007865 (sum-free sets), differences A288728.
For sums of any length > 1 we have A364349, non-strict A237667.
The complement is counted by A363226, non-strict A363225.
The non-strict version is A364345, ranks A364347, complement A364348.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

A364347 Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2023

Keywords

Comments

Or numbers without any prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A364345.

Examples

			We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
		

Crossrefs

Subsets of this type are counted by A007865 (sum-free sets).
Partitions of this type are counted by A364345.
The squarefree case is counted by A364346.
The complement is A364348, counted by A363225.
The non-binary version is counted by A364350.
Without re-using parts we have A364461, counted by A236912.
Without re-using parts we have complement A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&]

A325877 Number of strict integer partitions of n such that every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 18, 19, 26, 28, 36, 37, 50, 52, 67, 68, 89, 94, 115, 121, 151, 160, 195, 200, 247, 265, 312, 329, 386, 418, 487, 519, 600, 640, 742, 792, 901, 978, 1088, 1185, 1331, 1453, 1605, 1729, 1925, 2101, 2311, 2524, 2741, 3000
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The non-strict case is A325857.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)   (64)
                        (41)  (51)   (52)   (62)   (63)   (73)
                              (321)  (61)   (71)   (72)   (82)
                                     (421)  (431)  (81)   (91)
                                            (521)  (432)  (532)
                                                   (531)  (541)
                                                   (621)  (631)
                                                          (721)
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Related concepts:
- A partition whose submultiset sums cover an initial interval is said to be complete (A126796, ranked by A325781).
- In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum.
- A complete partition that is also knapsack is said to be perfect (A002033, ranked by A325780).
- A partition whose partial runs have all different sums is said to be rucksack (A353864, ranked by A353866, complement A354583).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   32: {1,1,1,1,1}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  140: {1,1,3,4}
  176: {1,1,1,1,5}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Complete partitions are counted by A126796, ranked by A325781.
These partitions are counted by A353865.
This is a special case of A353866, counted by A353864, complement A354583.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]

A364461 Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Also Heinz numbers of a type of sum-free partitions not allowing re-used parts, counted by A236912.

Examples

			The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
		

Crossrefs

Subsets of this type are counted by A085489, with re-usable parts A007865.
Subsets not of this type are counted by A093971, w/ re-usable parts A088809.
Partitions of this type are counted by A236912.
Allowing parts to be re-used gives A364347, counted by A364345.
The complement allowing parts to be re-used is A364348, counted by A363225.
The non-binary version allowing re-used parts is counted by A364350.
The complement is A364462, counted by A237113.
The non-binary version is A364531, counted by A237667, complement A364532.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]

A364462 Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

Also Heinz numbers of a type of sum-full partitions not allowing re-used parts, counted by A237113.
No partitions of this type are knapsack (A299702, A299729).
All multiples of terms are terms. - Robert Israel, Aug 30 2023

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   72: {1,1,1,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
		

Crossrefs

Subsets not of this type are counted by A085489, w/ re-usable parts A007865.
Subsets of this type are counted by A088809, with re-usable parts A093971.
Partitions not of this type are counted by A236912.
Partitions of this type are counted by A237113.
Subset of A299729.
The complement with re-usable parts is A364347, counted by A364345.
With re-usable parts we have A364348, counted by A363225 (strict A363226).
The complement is A364461.
The non-binary complement is A364531, counted by A237667.
The non-binary version is A364532, see also A364350.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Maple
    filter:= proc(n) local F, i,j,m;
      F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
      for i from 1 to nops(F)-1 do for j from 1 to i-1 do
        if member(F[i]+F[j],F) then return true fi
      od od;
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Or numbers with a prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A363225.

Examples

			We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
		

Crossrefs

Subsets of this type are counted by A093971, complement A007865.
Partitions of this type are counted by A363225, strict A363226.
The complement is A364347, counted by A364345.
The complement without re-using parts is A364461, counted by A236912.
Without re-using parts we have A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]

A364533 Number of strict integer partitions of n containing the sum of no pair of distinct parts. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 15, 21, 22, 28, 32, 38, 40, 51, 55, 65, 74, 83, 94, 111, 119, 136, 160, 174, 196, 222, 252, 273, 315, 341, 391, 425, 477, 518, 602, 636, 719, 782, 886, 944, 1073, 1140, 1302, 1380, 1553, 1651, 1888, 1995, 2224, 2370
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4    5    6    7     8     9     A     B     C
          21   31   32   42   43    53    54    64    65    75
                    41   51   52    62    63    73    74    84
                              61    71    72    82    83    93
                              421   521   81    91    92    A2
                                          432   631   A1    B1
                                          531   721   542   543
                                          621         632   732
                                                      641   741
                                                      731   831
                                                      821   921
		

Crossrefs

For subsets of {1..n} we have A085489, complement A088809.
The non-strict version is A236912, complement A237113, ranked by A364461.
Allowing re-used parts gives A364346.
The non-binary version is A364349, non-strict A237667 (complement A237668).
The linear combination-free version is A364350.
The complement in strict partitions is A364670, w/ re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A151897 counts sum-free subsets, complement A364534.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]] == {}&]],{n,0,30}]
Previous Showing 11-20 of 30 results. Next