cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A364350 Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(16) = 6 through a(22) = 12 strict partitions:
  (16)     (17)     (18)     (19)     (20)      (21)      (22)
  (9,7)    (9,8)    (10,8)   (10,9)   (11,9)    (12,9)    (13,9)
  (10,6)   (10,7)   (11,7)   (11,8)   (12,8)    (13,8)    (14,8)
  (11,5)   (11,6)   (13,5)   (12,7)   (13,7)    (15,6)    (15,7)
  (13,3)   (12,5)   (14,4)   (13,6)   (14,6)    (16,5)    (16,6)
  (7,5,4)  (13,4)   (7,6,5)  (14,5)   (17,3)    (17,4)    (17,5)
           (14,3)   (8,7,3)  (15,4)   (8,7,5)   (19,2)    (18,4)
           (15,2)            (16,3)   (9,6,5)   (11,10)   (19,3)
           (7,6,4)           (17,2)   (9,7,4)   (8,7,6)   (12,10)
                             (8,6,5)  (11,5,4)  (9,7,5)   (9,7,6)
                             (9,6,4)            (10,7,4)  (9,8,5)
                                                (10,8,3)  (7,6,5,4)
                                                (11,6,4)
                                                (11,7,3)
		

Crossrefs

For sums of subsets instead of combinations of partitions we have A151897.
For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The complement in strict partitions is A364839, non-strict A364913.
A more strict variation is A364915.
The case of all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A116861 and A364916 count linear combinations of strict partitions.
A323092 (ranks A320340) and A120641 count double-free partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combs[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364350(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            if max(p.values(),default=0)==1:
                s = set(p)
                if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                    c += 1
        return c # Chai Wah Wu, Sep 23 2023

Extensions

More terms and offset corrected by Martin Fuller, Sep 11 2023

A364272 Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A316402 at a(16) = 11 due to (7,5,3,1).

Examples

			The a(6) = 1 through a(16) = 11 partitions (A=10):
  (321) . (431) . (532)  (5321) (642)  (5431) (743)  (6432)  (853)
                  (541)         (651)  (6421) (752)  (6531)  (862)
                  (4321)        (5421) (7321) (761)  (7431)  (871)
                                (6321)        (5432) (7521)  (6532)
                                              (6431) (9321)  (6541)
                                              (6521) (54321) (7432)
                                              (7421)         (7621)
                                              (8321)         (8431)
                                                             (8521)
                                                             (A321)
                                                             (64321)
		

Crossrefs

The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}]

A093971 Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.

Original entry on oeis.org

0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
Offset: 1

Views

Author

T. D. Noe, Apr 20 2004

Keywords

Comments

In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is nonempty.
A variation of binary sum-full sets where parts can be re-used, this sequence counts subsets of {1..n} containing a part equal to the sum of two other (possibly equal) parts. The complement is counted by A007865. The non-binary version is A364914. For non-re-usable parts we have A088809. - Gus Wiseman, Aug 14 2023

Examples

			The a(1) = 0 through a(5) = 16 subsets:
  .  {1,2}  {1,2}    {1,2}      {1,2}
            {1,2,3}  {2,4}      {2,4}
                     {1,2,3}    {1,2,3}
                     {1,2,4}    {1,2,4}
                     {1,3,4}    {1,2,5}
                     {2,3,4}    {1,3,4}
                     {1,2,3,4}  {1,4,5}
                                {2,3,4}
                                {2,3,5}
                                {2,4,5}
                                {1,2,3,4}
                                {1,2,3,5}
                                {1,2,4,5}
                                {1,3,4,5}
                                {2,3,4,5}
                                {1,2,3,4,5}
		

Crossrefs

The complement is counted by A007865.
The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755).
The non-binary version is A364914, complement A326083.
The non-binary version w/o re-usable parts is A364534, complement A151897.
The version for partitions is A363225:
- ranks A364348,
- strict A363226,
- non-binary A364839,
- without re-usable parts A237113,
- non-binary without re-usable parts A237668.
The complement for partitions is A364345:
- ranks A364347,
- strict A364346,
- non-binary A364350,
- without re-usable parts A236912,
- non-binary without re-usable parts A237667.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 14 2023 *)

Formula

a(n) = 2^n - A007865(n).

Extensions

Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 01 2020

A088809 Number of subsets of {1, ..., n} that are not sum-free.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 27, 67, 154, 350, 763, 1638, 3450, 7191, 14831, 30398, 61891, 125557, 253841, 511818, 1029863, 2069341, 4153060, 8327646, 16687483, 33422562, 66916342, 133936603, 268026776, 536277032, 1072886163, 2146245056, 4293187682, 8587371116
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2003

Keywords

Comments

a(n) = 2^n - A085489(n); a non-sum-free subset contains at least one subset {u,v, w} with w=u+v.
A variation of binary sum-full sets where parts cannot be re-used, this sequence counts subsets of {1..n} with an element equal to the sum of two distinct others. The complement is counted by A085489. The non-binary version is A364534. For re-usable parts we have A093971. - Gus Wiseman, Aug 10 2023

Examples

			From _Gus Wiseman_, Aug 10 2023: (Start)
The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8).
The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7).
The a(1) = 0 through a(5) = 10 sets:
  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                 {1,3,4}    {1,3,4}
                 {1,2,3,4}  {1,4,5}
                            {2,3,5}
                            {1,2,3,4}
                            {1,2,3,5}
                            {1,2,4,5}
                            {1,3,4,5}
                            {2,3,4,5}
                            {1,2,3,4,5}
(End)
		

Crossrefs

The complement is counted by A085489, differences A364755.
With re-usable parts we have A093971, for partitions A363225.
The complement for partitions is A236912:
non-binary A237667,
ranks A364461,
strict A364533.
The version for partitions is A237113:
non-binary A237668,
ranks A364462,
strict A364670.
The non-binary version is A364534, complement A151897.
First differences are A364756.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 10 2023 *)

Extensions

Terms a(32) and beyond from Fausto A. C. Cariboni, Sep 28 2020

A236912 Number of partitions of n such that no part is a sum of two other parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

These are partitions containing the sum of no 2-element submultiset of the parts, a variation of binary sum-free partitions where parts cannot be re-used, ranked by A364461. The complement is counted by A237113. The non-binary version is A237667. For re-usable parts we have A364345. - Gus Wiseman, Aug 09 2023

Examples

			Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1].  Thus, a(6) = 11 - 3 = 8.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (311)    (222)     (322)      (71)
                            (11111)  (411)     (331)      (332)
                                     (3111)    (421)      (521)
                                     (111111)  (511)      (611)
                                               (2221)     (2222)
                                               (4111)     (3311)
                                               (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
(End)
		

Crossrefs

For subsets of {1..n} we have A085489, complement A088809.
The complement is counted by A237113, ranks A364462.
The non-binary version is A237667, ranks A364531.
The non-binary complement is A237668, ranks A364532.
The version with re-usable parts is A364345, ranks A364347.
The (strict) version for linear combinations of parts is A364350.
These partitions have ranks A364461.
The strict case is A364533, non-binary A364349.
The strict complement is A364670, with re-usable parts A363226.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]],  Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
    u = PartitionsP[Range[z]] - t  (* A237113, Peter J. C. Moses, Feb 03 2014 *)
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)

Formula

a(n) = A000041(n) - A237113(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 17 2023

A237667 Number of partitions of n such that no part is a sum of two or more other parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 61, 61, 87, 85, 120, 117, 160, 156, 224, 216, 288, 277, 380, 363, 483, 474, 622, 610, 783, 755, 994, 986, 1235, 1191, 1549, 1483, 1876, 1865, 2306, 2279, 2806, 2732, 3406, 3413, 4091, 4013, 4991, 4895, 5872
Offset: 0

Views

Author

Clark Kimberling, Feb 11 2014

Keywords

Comments

From Gus Wiseman, Aug 09 2023: (Start)
Includes all knapsack partitions (A108917), but first differs at a(12) = 28, A108917(12) = 25. The difference is accounted for by the non-knapsack partitions: (4332), (5331), (33222).
These are partitions not containing the sum of any non-singleton submultiset of the parts, a variation of non-binary sum-free partitions where parts cannot be re-used, ranked by A364531. The complement is counted by A237668. The binary version is A236912. For re-usable parts we have A364350.
(End)

Examples

			For n = 6, the nonqualifiers are 123, 1113, 1122, 11112, leaving a(6) = 7.
From _Gus Wiseman_, Aug 09 2023: (Start)
The partition y = (5,3,1,1) has submultiset (3,1,1) with sum in y, so is not counted under a(10).
The partition y = (5,3,3,1) has no non-singleton submultiset with sum in y, so is counted under a(12).
The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (311)    (222)     (322)      (71)
                            (11111)  (411)     (331)      (332)
                                     (111111)  (421)      (521)
                                               (511)      (611)
                                               (2221)     (2222)
                                               (4111)     (3311)
                                               (1111111)  (5111)
                                                          (11111111)
(End)
		

Crossrefs

For subsets of {1..n} we have A151897, binary A085489.
The binary version is A236912, ranks A364461.
The binary complement is A237113, ranks A364462.
The complement is counted by A237668, ranks A364532.
The binary version with re-usable parts is A364345, strict A364346.
The strict case is A364349, binary A364533.
These partitions have ranks A364531.
The complement for subsets is A364534, binary A088809.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

Extensions

a(21)-a(53) from Giovanni Resta, Feb 22 2014

A364534 Number of subsets of {1..n} containing some element equal to the sum of two or more distinct other elements. A variation of sum-full subsets without re-used elements.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 27, 68, 156, 357, 775, 1667, 3505, 7303, 15019, 30759, 62489, 126619, 255542, 514721, 1034425, 2076924, 4164650, 8346306, 16715847, 33467324, 66982798, 134040148, 268179417, 536510608, 1073226084, 2146759579, 4293930436, 8588485846, 17177799658
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Examples

			The a(0) = 0 through a(5) = 10 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,3,4}    {1,3,4}
                    {1,2,3,4}  {1,4,5}
                               {2,3,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

The binary version is A088809, complement A085489.
The complement is counted by A151897.
The complement for partitions is A237667, ranks A364531.
For partitions we have A237668, ranks A364532.
For strict partitions we have A364272, complement A364349.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,10}]

Formula

a(n) = 2^n - A151897(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(16)-a(25) from Chai Wah Wu, Nov 14 2023
a(26) onwards (using A151897) added by Andrew Howroyd, Jan 27 2024

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A364349 Number of strict integer partitions of n containing the sum of no subset of the parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

First differs from A275972 in counting (7,5,3,1), which is not knapsack.

Examples

			The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16).
The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)    (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)  (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)  (5,2)    (6,2)    (6,3)
                                        (6,1)    (7,1)    (7,2)
                                        (4,2,1)  (5,2,1)  (8,1)
                                                          (4,3,2)
                                                          (5,3,1)
                                                          (6,2,1)
		

Crossrefs

For subsets of {1..n} we have A151897, complement A364534.
The non-strict version is A237667, ranked by A364531.
The complement in strict partitions is counted by A364272.
The linear combination-free version is A364350.
The binary version is A364533, allowing re-used parts A364346.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions (not re-using parts), complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
Showing 1-10 of 17 results. Next