A093971
Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.
Original entry on oeis.org
0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
Offset: 1
The a(1) = 0 through a(5) = 16 subsets:
. {1,2} {1,2} {1,2} {1,2}
{1,2,3} {2,4} {2,4}
{1,2,3} {1,2,3}
{1,2,4} {1,2,4}
{1,3,4} {1,2,5}
{2,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A007865.
The non-binary version w/o re-usable parts is
A364534, complement
A151897.
The version for partitions is
A363225:
- non-binary without re-usable parts
A237668.
The complement for partitions is
A364345:
- non-binary without re-usable parts
A237667.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 14 2023 *)
A237113
Number of partitions of n such that some part is a sum of two other parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
Offset: 0
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(0) = 0 through a(9) = 10 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(21111) (211111) (3221) (4311)
(4211) (5211)
(22211) (32211)
(32111) (42111)
(221111) (222111)
(2111111) (321111)
(2211111)
(21111111)
(End)
These partitions have ranks
A364462.
-
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,30}] (* Gus Wiseman, Aug 09 2023 *)
A088809
Number of subsets of {1, ..., n} that are not sum-free.
Original entry on oeis.org
0, 0, 0, 1, 3, 10, 27, 67, 154, 350, 763, 1638, 3450, 7191, 14831, 30398, 61891, 125557, 253841, 511818, 1029863, 2069341, 4153060, 8327646, 16687483, 33422562, 66916342, 133936603, 268026776, 536277032, 1072886163, 2146245056, 4293187682, 8587371116
Offset: 0
From _Gus Wiseman_, Aug 10 2023: (Start)
The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8).
The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7).
The a(1) = 0 through a(5) = 10 sets:
. . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
The complement for partitions is
A236912:
The version for partitions is
A237113:
Cf.
A000079,
A007865,
A050291,
A051026,
A103580,
A288728,
A326020,
A326080,
A326083,
A364272,
A364349.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 10 2023 *)
A236912
Number of partitions of n such that no part is a sum of two other parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
Offset: 0
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(3111) (421) (521)
(111111) (511) (611)
(2221) (2222)
(4111) (3311)
(31111) (5111)
(1111111) (41111)
(311111)
(11111111)
(End)
The (strict) version for linear combinations of parts is
A364350.
These partitions have ranks
A364461.
-
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)
A237667
Number of partitions of n such that no part is a sum of two or more other parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 61, 61, 87, 85, 120, 117, 160, 156, 224, 216, 288, 277, 380, 363, 483, 474, 622, 610, 783, 755, 994, 986, 1235, 1191, 1549, 1483, 1876, 1865, 2306, 2279, 2806, 2732, 3406, 3413, 4091, 4013, 4991, 4895, 5872
Offset: 0
For n = 6, the nonqualifiers are 123, 1113, 1122, 11112, leaving a(6) = 7.
From _Gus Wiseman_, Aug 09 2023: (Start)
The partition y = (5,3,1,1) has submultiset (3,1,1) with sum in y, so is not counted under a(10).
The partition y = (5,3,3,1) has no non-singleton submultiset with sum in y, so is counted under a(12).
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(111111) (421) (521)
(511) (611)
(2221) (2222)
(4111) (3311)
(1111111) (5111)
(11111111)
(End)
These partitions have ranks
A364531.
-
Map[Count[Map[MemberQ[#,Apply[Alternatives,Map[Apply[Plus,#]&, DeleteDuplicates[DeleteCases[Subsets[#],?(Length[#]<2&)]]]]]&, IntegerPartitions[#]],False]&,Range[20]] (* _Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)
A237668
Number of partitions of n such that some part is a sum of two or more other parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 49, 60, 93, 115, 170, 210, 300, 370, 510, 632, 846, 1031, 1359, 1670, 2159, 2630, 3355, 4082, 5130, 6220, 7739, 9360, 11555, 13889, 16991, 20402, 24824, 29636, 35855, 42707, 51309, 60955, 72896, 86328, 102826, 121348
Offset: 0
a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(0) = 0 through a(9) = 13 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(3111) (31111) (3221) (4311)
(21111) (211111) (4211) (5211)
(22211) (32211)
(32111) (33111)
(41111) (42111)
(221111) (222111)
(311111) (321111)
(2111111) (411111)
(2211111)
(3111111)
(21111111)
(End)
These partitions have ranks
A364532.
For subsets instead of partitions we have
A364534, complement
A151897.
A299701 counts distinct subset-sums of prime indices.
-
z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m
(* Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,15}] (* Gus Wiseman, Aug 12 2023 *)
A364347
Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1
We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
Subsets of this type are counted by
A007865 (sum-free sets).
Partitions of this type are counted by
A364345.
The squarefree case is counted by
A364346.
The non-binary version is counted by
A364350.
Without re-using parts we have complement
A364462, counted by
A237113.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&]
A364462
Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.
Original entry on oeis.org
12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
70: {1,3,4}
72: {1,1,1,2,2}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
126: {1,2,2,4}
132: {1,1,2,5}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
Subsets not of this type are counted by
A085489, w/ re-usable parts
A007865.
Subsets of this type are counted by
A088809, with re-usable parts
A093971.
Partitions not of this type are counted by
A236912.
Partitions of this type are counted by
A237113.
-
filter:= proc(n) local F, i,j,m;
F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
for i from 1 to nops(F)-1 do for j from 1 to i-1 do
if member(F[i]+F[j],F) then return true fi
od od;
false
end proc:
select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]
A364348
Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1
We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
65: {3,6}
66: {1,2,5}
70: {1,3,4}
72: {1,1,1,2,2}
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]
A364533
Number of strict integer partitions of n containing the sum of no pair of distinct parts. A variation of sum-free strict partitions.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 15, 21, 22, 28, 32, 38, 40, 51, 55, 65, 74, 83, 94, 111, 119, 136, 160, 174, 196, 222, 252, 273, 315, 341, 391, 425, 477, 518, 602, 636, 719, 782, 886, 944, 1073, 1140, 1302, 1380, 1553, 1651, 1888, 1995, 2224, 2370
Offset: 0
The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
1 2 3 4 5 6 7 8 9 A B C
21 31 32 42 43 53 54 64 65 75
41 51 52 62 63 73 74 84
61 71 72 82 83 93
421 521 81 91 92 A2
432 631 A1 B1
531 721 542 543
621 632 732
641 741
731 831
821 921
Allowing re-used parts gives
A364346.
The linear combination-free version is
A364350.
The complement in strict partitions is
A364670, w/ re-used parts
A363226.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]] == {}&]],{n,0,30}]
Showing 1-10 of 19 results.
Comments