cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A362618 Numbers whose prime factorization has either (1) odd length, or (2) equal middle parts.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is a prime factor of n.

Examples

			The prime factorization of 90 is 2*3*3*5, with middle parts (3,3), so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238478.
The complement (without 1) is A362617, counted by A238479.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362611 ranks modes in prime factorization, counted by A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],MemberQ[prifacs[#],Median[prifacs[#]]]&]

A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A363719 - 1 for n > 0.
Including primes gives A363727, counted by A363719.
For prime powers instead of just primes we have A363729, counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

Formula

Complement of A000040 in A363727.
Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)).

A364191 Low co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 1, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 2, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "low co-mode" in a multiset is the least co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 2.
		

Crossrefs

For prime factors instead of indices we have A067695, high A359612.
For mode instead of co-mode we have A363486, high A363487, triangle A363952.
For median instead of co-mode we have A363941, high A363942.
Positions of 1's are A364158, counted by A364159.
The high version is A364192 = positions of 1's in A364061.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Min[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A067695(n)).
A067695(n) = A000040(a(n)).

A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 1, 7, 6, 16, 1, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 2, 8, 5, 6, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4.
		

Crossrefs

For prime factors instead of indices we have A359612, low A067695.
For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952).
The version for median instead of co-mode is A363942, low A363941.
Positions of 1's are A364061, counted by A364062.
The low version is A364191, 1's at A364158 (counted by A364159).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A359612(n)).
A359612(n) = A000040(a(n)).

A126594 Floor of the average of the prime factors of n with multiplicity.

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 4, 4, 2, 17, 2, 19, 3, 5, 6, 23, 2, 5, 7, 3, 3, 29, 3, 31, 2, 7, 9, 6, 2, 37, 10, 8, 2, 41, 4, 43, 5, 3, 12, 47, 2, 7, 4, 10, 5, 53, 2, 8, 3, 11, 15, 59, 3, 61, 16, 4, 2, 9, 5, 67, 7, 13, 4, 71, 2, 73, 19, 4, 7, 9, 6, 79, 2, 3, 21, 83, 3, 11, 22, 16, 4, 89, 3, 10
Offset: 2

Views

Author

Cino Hilliard, Jan 06 2007

Keywords

Crossrefs

Cf. A067629 (rounding instead of flooring), A076690.
This is the floor of A123528/A123529.
Without multiplicity we have A363895.
For prime indices instead of factors we have A363943, triangle A363945.
Positions of first appearances are A364037.
The ceiling is A364156.
Positions of 2's are A364157, for prime indices A363949.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, ranks A316413.
A078175 lists numbers with integer mean of prime factors.

Programs

  • Mathematica
    Table[Floor[(Plus@@Times@@@FactorInteger[n])/PrimeOmega[n]], {n, 2, 90}] (* Alonso del Arte, May 21 2012 *)
  • PARI
    avg(n) = { local(x,j,ln) for(x=2,n,a=ifactor(x); ln=length(a); print1(floor(sum(j=1,ln,a[j])/ln)",")) } ifactor(n) = \The vector of the prime factors of n with multiplicity. { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) }

Formula

a(p^n)=p, p prime, n >= 1. - Philippe Deléham, Nov 23 2008
a(n) = floor(A001414(n)/A001222(n)). - Philippe Deléham, Nov 24 2008

A327478 Numbers whose average binary index is also a binary index.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 21, 28, 31, 32, 39, 42, 56, 57, 62, 64, 73, 78, 84, 93, 107, 112, 114, 124, 127, 128, 141, 146, 155, 156, 168, 175, 177, 186, 214, 217, 224, 228, 245, 248, 254, 256, 267, 273, 282, 287, 292, 310, 312, 313, 336, 341, 350, 354, 371, 372
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary indices begins:
   1: 1
   2: 2
   4: 3
   7: 1 2 3
   8: 4
  14: 2 3 4
  16: 5
  21: 1 3 5
  28: 3 4 5
  31: 1 2 3 4 5
  32: 6
  39: 1 2 3 6
  42: 2 4 6
  56: 4 5 6
  57: 1 4 5 6
  61: 2 3 4 5 6
		

Crossrefs

Numbers whose binary indices have integer mean are A326669.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],MemberQ[bpe[#],Mean[bpe[#]]]&]

A362980 Numbers whose multiset of prime factors (with multiplicity) has different median from maximum.

Original entry on oeis.org

6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110
Offset: 1

Views

Author

Gus Wiseman, May 12 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is not in the sequence.
The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is in the sequence.
The terms together with their prime indices begin:
     6: {1,2}        36: {1,1,2,2}      60: {1,1,2,3}
    10: {1,3}        38: {1,8}          62: {1,11}
    12: {1,1,2}      39: {2,6}          63: {2,2,4}
    14: {1,4}        40: {1,1,1,3}      65: {3,6}
    15: {2,3}        42: {1,2,4}        66: {1,2,5}
    20: {1,1,3}      44: {1,1,5}        68: {1,1,7}
    21: {2,4}        45: {2,2,3}        69: {2,9}
    22: {1,5}        46: {1,9}          70: {1,3,4}
    24: {1,1,1,2}    48: {1,1,1,1,2}    72: {1,1,1,2,2}
    26: {1,6}        51: {2,7}          74: {1,12}
    28: {1,1,4}      52: {1,1,6}        76: {1,1,8}
    30: {1,2,3}      55: {3,5}          77: {4,5}
    33: {2,5}        56: {1,1,1,4}      78: {1,2,6}
    34: {1,7}        57: {2,8}          80: {1,1,1,1,3}
    35: {3,4}        58: {1,10}         82: {1,13}
		

Crossrefs

Partitions of this type are counted by A237821.
For mode instead of median we have A362620, counted by A240302.
The complement is A362621, counted by A053263.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.

Programs

  • Mathematica
    Select[Range[100],(y=Flatten[Apply[ConstantArray,FactorInteger[#],{1}]];Max@@y!=Median[y])&]

A362981 Heinz numbers of integer partitions such that 2*(least part) >= greatest part.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 91, 96, 97, 101, 103, 105, 107, 108, 109, 113, 119, 121, 125
Offset: 1

Views

Author

Gus Wiseman, May 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
By conjugation, also Heinz numbers of partitions whose greatest part appears at a middle position, namely k/2, (k+1)/2, or (k+2)/2, where k is the number of parts. These partitions have ranks A362622.

Examples

			The terms together with their prime indices begin:
     1: {}         16: {1,1,1,1}      36: {1,1,2,2}
     2: {1}        17: {7}            37: {12}
     3: {2}        18: {1,2,2}        41: {13}
     4: {1,1}      19: {8}            43: {14}
     5: {3}        21: {2,4}          45: {2,2,3}
     6: {1,2}      23: {9}            47: {15}
     7: {4}        24: {1,1,1,2}      48: {1,1,1,1,2}
     8: {1,1,1}    25: {3,3}          49: {4,4}
     9: {2,2}      27: {2,2,2}        53: {16}
    11: {5}        29: {10}           54: {1,2,2,2}
    12: {1,1,2}    31: {11}           55: {3,5}
    13: {6}        32: {1,1,1,1,1}    59: {17}
    15: {2,3}      35: {3,4}          61: {18}
		

Crossrefs

For prime factors instead of indices we have A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
The complement is A362982, counted by A237820.
Partitions of this type are counted by A237824.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],2*Min@@prix[#]>=Max@@prix[#]&]

A362982 Heinz numbers of partitions such that 2*(least part) < greatest part.

Original entry on oeis.org

10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1

Views

Author

Gus Wiseman, May 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    10: {1,3}        44: {1,1,5}      70: {1,3,4}
    14: {1,4}        46: {1,9}        74: {1,12}
    20: {1,1,3}      50: {1,3,3}      76: {1,1,8}
    22: {1,5}        51: {2,7}        78: {1,2,6}
    26: {1,6}        52: {1,1,6}      80: {1,1,1,1,3}
    28: {1,1,4}      56: {1,1,1,4}    82: {1,13}
    30: {1,2,3}      57: {2,8}        84: {1,1,2,4}
    33: {2,5}        58: {1,10}       85: {3,7}
    34: {1,7}        60: {1,1,2,3}    86: {1,14}
    38: {1,8}        62: {1,11}       87: {2,10}
    39: {2,6}        66: {1,2,5}      88: {1,1,1,5}
    40: {1,1,1,3}    68: {1,1,7}      90: {1,2,2,3}
    42: {1,2,4}      69: {2,9}        92: {1,1,9}
		

Crossrefs

For prime factors instead of indices we have A069900, complement A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
Partitions of this type are counted by A237820.
The complement is A362981, counted by A237824.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],2*Min@@prix[#]
    				

A363954 Numbers whose prime indices have low mean 2.

Original entry on oeis.org

3, 9, 10, 14, 15, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 70, 75, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 189, 196, 198, 204, 208, 210, 220, 225, 234, 243, 250, 252, 260, 264, 270, 272, 280, 294, 297, 300, 304, 308, 312, 315, 330, 350
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

Extending the terminology of A124944, the "low mean" of a multiset is obtained by taking the mean and rounding down.

Examples

			The terms together with their prime indices begin:
     3: {2}
     9: {2,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    42: {1,2,4}
    44: {1,1,5}
    45: {2,2,3}
    50: {1,3,3}
    52: {1,1,6}
    63: {2,2,4}
    66: {1,2,5}
    70: {1,3,4}
    75: {2,3,3}
    81: {2,2,2,2}
    84: {1,1,2,4}
    88: {1,1,1,5}
    90: {1,2,2,3}
   100: {1,1,3,3}
		

Crossrefs

Partitions of this type are counted by A363745.
Positions of 2's in A363943 (high A363944), triangle A363945 (high A363946).
For mean 1 we have A363949.
The high version is A363950, counted by A026905.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
A363948 lists numbers whose prime indices have mean 1, counted by A363947.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==2&]
Previous Showing 51-60 of 68 results. Next