cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A123098 Multiplicative encoding of triangle formed by reading Pascal's triangle mod 2 (A047999).

Original entry on oeis.org

2, 6, 10, 210, 22, 858, 1870, 9699690, 46, 4002, 7130, 160660290, 20746, 1008940218, 2569288370, 32589158477190044730, 118, 21594, 39530, 3595293030, 94754, 17808161514, 44788794490, 7074421030108255253430, 263258, 141108130806, 281595235990, 296987147493893719182390, 944729501606
Offset: 0

Views

Author

Jonathan Vos Post, Nov 05 2006

Keywords

Comments

This is to A047999 "Triangle formed by reading Pascal's triangle mod 2" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows." a(2^n - 1) = primorial(2^n) = A002110(A000079(n)). In row(n) the primes with exponent 1 form row(n) of a Sierpinski sieve, so this sequence is a kind of Gödelization of a Sierpinski sieve.
All terms are divisible by 2 and the n-th term, a(n-1), is also divisible by prime(n). This sequence appears as first column of the square array A255483; its second column A276804 is very similar, with all prime factors shifted to the net larger prime (cf. A003961). - M. F. Hasler, Sep 17 2016
a(n) is the n-th power of 6 in the ring defined in A329329. - Peter Munn, Jan 04 2020

Examples

			a(0) = 2^T(0,0) = 2^1 = 2.
a(1) = 2^T(1,0) * 3^T(1,1) = 2^1 * 3^1 = 6.
a(2) = 2^T(2,0) * 3^T(2,1) * 5^T(2,2) = 2^1 * 3^0 * 5^1 = 10.
a(3) = 2^T(3,0) * 3^T(3,1) * 5^T(3,2) * 7^T(3,3) = 2^1 * 3^1 * 5^1 * 7^1 = 210.
a(4) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 = 22.
a(5) = 2^1 * 3^1 * 5^0 * 7^0 * 11^1 * 13^1 = 858.
a(6) = 2^1 * 3^0 * 5^1 * 7^0 * 11^1 * 13^0 * 17^1 = 1870.
a(7) = 2^1 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1 = 9699690.
a(8) = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 = 46.
a(9) = 2^1 * 3^1 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 = 4002.
a(10) = 2^1 * 3^0 * 5^1 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^1 = 7130.
a(11) = 2^1 * 3^1 * 5^1 * 7^1 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 * 31^1 * 37^1 = 160660290.
a(12) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^0 * 37^0 * 41^1 = 20746.
From _N. J. A. Sloane_, Feb 28 2015: (Start)
Factorizations of initial terms, from Cobeli-Zaharescu paper:
                     2 = 2
                     6 = 2*3
                    10 = 2*5
                   210 = 2*3*5*7
                    22 = 2*11
                   858 = 2*3*11*13
                  1870 = 2*5*11*17
               9699690 = 2*3*5*7*11*13*17*19
                    46 = 2*23
                  4002 = 2*3*23*29
                  7130 = 2*5*23*31
             160660290 = 2*3*5*7*23*29*31*37
                 20746 = 2*11*23*41
            1008940218 = 2*3*11*13*23*29*41*43
            2569288370 = 2*5*11*17*23*31*41*47
  32589158477190044730 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
From _Jon E. Schoenfield_, Jun 09 2019: (Start)
   n | Factorization of a(n)
  ---+-----------------------------------------------
   0 | 2
   1 | 2* 3
   2 | 2   * 5
   3 | 2* 3* 5* 7
   4 | 2         *11
   5 | 2* 3      *11*13
   6 | 2   * 5   *11   *17
   7 | 2* 3* 5* 7*11*13*17*19
   8 | 2                     *23
   9 | 2* 3                  *23*29
  10 | 2   * 5               *23   *31
  11 | 2* 3* 5* 7            *23*29*31*37
  12 | 2         *11         *23         *41
  13 | 2* 3      *11*13      *23*29      *41*43
  14 | 2   * 5   *11   *17   *23   *31   *41   *47
  15 | 2* 3* 5* 7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
		

Crossrefs

Programs

  • Maple
    f:=n->mul(ithprime(k+1)^(binomial(n,k) mod 2),k=0..n);
    [seq(f(n),n=0..40)];
  • Mathematica
    a[n_] := Product[Prime[k+1]^Mod[Binomial[n, k], 2], {k, 0, n}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 01 2018, from Maple *)
  • PARI
    a(n) = prod (k=0, n, if (binomial(n,k)%2, prime(k+1), 1)) \\ Rémy Sigrist, Jun 09 2019
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A123098(n):
        return reduce(mul,(1 if ~(n-1) & k else prime(k+1) for k in range(n))) # Chai Wah Wu, Feb 08 2016
    
  • Scheme
    (define (A123098 n) (A019565 (A001317 n))) ;; Antti Karttunen, Sep 18 2016
    

Formula

a(n) = Product_{i=0..n} p(i+1)^(C(n,i) mod 2).
a(n) = Product_{i=0..n} p(i+1)^T(n,i), where T(n,i) are as in A047999 and where Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
From Antti Karttunen, Sep 18 2016: (Start)
a(n) = A007913(A007188(n)). [From the first comment.]
a(n) = A019565(A001317(n)).
(End)
a(0) = 2, and for n > 0, a(n) = A329329(a(n-1), 6). - Peter Munn, Jan 04 2020

Extensions

Further terms from N. J. A. Sloane, Feb 28 2015
Changed offset from 1 to 0, corresponding changes to formulas and examples from Antti Karttunen, Sep 18 2016

A005145 n copies of n-th prime.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1

Views

Author

Keywords

Comments

Seen as a triangle read by rows: T(n,k) = A000040(n), 1 <= k <= n; row sums = A033286; central terms = A031368. - Reinhard Zumkeller, Aug 05 2009
Seen as a square array read by antidiagonals, a subtable of the binary operation multiplication tables A297845, A306697 and A329329. - Peter Munn, Jan 15 2020

Examples

			Triangle begins:
  2;
  3, 3;
  5, 5, 5;
  7, 7, 7, 7;
  ...
		

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.

Crossrefs

Sequences with similar definitions: A002024, A175944.
Cf. A000040 (range of values), A003961, A031368 (main diagonal), A033286 (row sums), A097906.
Subtable of A297845, A306697, A329329.

Programs

  • Haskell
    a005145 n k = a005145_tabl !! (n-1) !! (k-1)
    a005145_row n = a005145_tabl !! (n-1)
    a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list
    a005145_list = concat a005145_tabl
    -- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
    
  • Magma
    [NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
    
  • Mathematica
    Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *)
    Table[PadRight[{},n,Prime[n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
  • PARI
    a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
    
  • Python
    from sympy import primerange
    a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)]
    print(a) # Michael S. Branicky, Jul 13 2022
    
  • Python
    from math import isqrt
    from sympy import prime
    def A005145(n): return prime(isqrt(n<<3)+1>>1) # Chai Wah Wu, Jun 08 2025

Formula

From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
a(n) = A000040(A002024(n)). (End)
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)) = A329329(A(n,1), A(1,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022

A270437 Multiplicative with a(p^e) = p^(e XOR 2e), where XOR is bitwise-xor.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 32, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 864, 15625, 17576, 243, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, 125000
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Comments

Multiplicative with a(p^e) = p^A048724(e), where A048724(e) = (e XOR 2e).
Multiples of 8 in the ring defined in A329329. - Peter Munn, Jan 17 2020

Crossrefs

Cf. A262675 (same sequence sorted into ascending order).
Cf. also A270418, A270419, A270436 and permutation A273671.
Row 8 and column 8 of A329329.

Programs

  • Mathematica
    f[p_, e_] := p^BitXor[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 07 2023 *)

Formula

a(1) = 1, for n > 1, a(n) = A020639(n)^A048724(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
A270418(a(n)) = 1, A270419(a(n)) = n.
a(n) = A329329(n,8) = A329329(8,n). - Peter Munn, Jan 17 2020

Extensions

Name changed by Antti Karttunen, Sep 07 2023

A344534 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A002262(e_k))^2^A025581(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 12, 24, 16, 32, 64, 128, 48, 96, 192, 384, 9, 18, 36, 72, 27, 54, 108, 216, 144, 288, 576, 1152, 432, 864, 1728, 3456, 5, 10, 20, 40, 15, 30, 60, 120, 80, 160, 320, 640, 240, 480, 960, 1920, 45, 90, 180, 360, 135, 270, 540, 1080, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 9
5| 5 8
3| 2 4 7
2| 0 1 3 6
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344536.
This sequence establishes a bijection from A261195 to A225547.
This sequence and A344535 each map between two useful choices for encoding sets of elements drawn from a 2-dimensional array. To give a very specific example, each mapping is an isomorphism between two alternative integer representations of the polynomial ring GF2[x,y]. The relevant set is {x^i*y^j : i, j >= 0}. The mappings between the two representations of the ring's addition operation are from XOR (A003987) to A059897(.,.) and for the multiplication operation, they are from A329331(.,.) to A329329(.,.). - Peter Munn, May 31 2021

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3|
      2|   X X
    ---+------
    p/k| 0 1 2
- a(42) = 2^2^1 * 2^2^2 * 5^2^0 = 320.
		

Crossrefs

Comparable mappings that also use Fermi-Dirac factors: A052330, A059900.
Maps binary operations A003987 to A059897, A329331 to A329329.

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v* = prime(1 + A002262(e))^2^A025581(e)); v }

Formula

a(n) = A344535(A344531(n)).
a(n) = A344535(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A036442(n)) = prime(n).
a(A006125(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).
From Peter Munn, Jun 06 2021: (Start)
a(n) = A225546(A344535(n)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(A329331(n, k)) = A329329(a(n), a(k)).
(End)

A329330 Multiplication operation of a ring over the positive integers that has A059897(.,.) as addition operation and is isomorphic to GF(2)[x] with polynomial x^i mapped to A050376(i+1). Square array read by descending antidiagonals: A(n,k), n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 7, 7, 7, 6, 1, 1, 7, 12, 9, 9, 12, 7, 1, 1, 8, 9, 20, 11, 20, 9, 8, 1, 1, 9, 15, 11, 35, 35, 11, 15, 9, 1, 1, 10, 11, 28, 13, 8, 13, 28, 11, 10, 1, 1, 11, 21, 13, 45, 63, 63, 45, 13, 21, 11, 1
Offset: 1

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

When creating A329329, the author realized it was isomorphic to multiplication in the GF(2)[x,y] polynomial ring. However, A329329 was unusual in having A059897(.,.) as additive operator, whereas the equivalent univariate polynomial ring, GF(2)[x], is more commonly mapped (to integers) with bitwise exclusive-or (A003987) representing polynomial addition (and A048720(.,.) representing polynomial multiplication). This sequence shows how multiplication in GF(2)[x] can look when mapped to integers with A059897(.,.) representing polynomial addition.
The group defined by the binary operation A059897(.,.) over the positive integers is commutative with all elements self-inverse, and isomorphic to the additive group of the polynomial ring GF(2)[x]. There is a unique isomorphism extending each bijective mapping between respective minimal generating sets. The lexicographically earliest minimal generating set for the A059897 group is A050376, often called the Fermi-Dirac primes. The most meaningful generating set for the additive group of GF(2)[x] is {x^i: i >= 0}.
Using f to denote the intended isomorphism from GF(2)[x], we specify f(x^i) = A050376(i+1). This maps minimal generating sets of the additive groups, so the definition of f is completed by specifying f(a+b) = A059897(f(a), f(b)). We then calculate the image under f of polynomial multiplication in GF(2)[x], giving us this sequence as the matching multiplication operation for an isomorphic ring over the positive integers. Using g to denote the inverse of f, A(n,k) = f(g(n) * g(k)).
Note that A050376 is closed with respect to A(.,.).
Recall that GF(2)[x] is more usually mapped to integers with A003987(.,.) as addition and A048720(.,.) as multiplication. With this usual mapping, under which A000079(i) is the image of x^i, A052330(.) is the relevant isomorphism from nonnegative integers under A048720(.,.) and A003987(.,.) to positive integers under A(.,.) and A059897(.,.), with A052331(.) its inverse.

Examples

			Square array A(n,k) begins:
  n\k |  1    2    3    4    5    6    7    8    9   10   11   12
  ----+----------------------------------------------------------
   1  |  1    1    1    1    1    1    1    1    1    1    1    1
   2  |  1    2    3    4    5    6    7    8    9   10   11   12
   3  |  1    3    4    5    7   12    9   15   11   21   13   20
   4  |  1    4    5    7    9   20   11   28   13   36   16   35
   5  |  1    5    7    9   11   35   13   45   16   55   17   63
   6  |  1    6   12   20   35    8   63  120   99  210  143   15
   7  |  1    7    9   11   13   63   16   77   17   91   19   99
   8  |  1    8   15   28   45  120   77   14  117  360  176  420
   9  |  1    9   11   13   16   99   17  117   19  144   23  143
  10  |  1   10   21   36   55  210   91  360  144   22  187  756
  11  |  1   11   13   16   17  143   19  176   23  187   25  208
  12  |  1   12   20   35   63   15   99  420  143  756  208   28
		

Crossrefs

Distributes over A059897, and isomorphic to A048720 over A003987, with A052331 (inverse A052330) as isomorphism.
Row/column 3: A300841.
Row/column k sorted into increasing order: A003159 (k=3), A339690 (k=4), A000379 (k=6).
Subsequences of row/column k: A240521 (k=6), A240522 (k=8), A240536 (k=10), A240524 (k=24), A241025 (k=30), A241024 (k=40).

Formula

A(n,k) = A052330(A048720(A052331(n), A052331(k))), n >= 1, k >= 1.
A059897-based definition: (Start)
A(A050376(i), A050376(j)) = A050376(i+j-1).
A(A059897(n,k), m) = A059897(A(n,m), A(k,m)).
A(m, A059897(n,k)) = A059897(A(m,n), A(m,k)).
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1.
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(A300841(n), k) = A(n, A300841(k)) = A300841(A(n,k)).
A(n,3) = A(3,n) = A300841(n).
A(n,4) = A(4,n) = A300841^2(n).
A(n,5) = A(5,n) = A300841^3(n).
A(A050376(m), 6) = A(6, A050376(m)) = A240521(m).
A(n,7) = A(7,n) = A300841^4(n).
A(A050376(m), 8) = A(8, A050376(m)) = A240522(m).
A(n,9) = A(9,n) = A300841^5(n).
A(A050376(m), 10) = A(10, A050376(m)) = A240536(m).
A(A050376(m), 12) = A(12, A050376(m)) = A300841(A240521(m)).
A(A050376(m), 24) = A(24, A050376(m)) = A240524(m).
A(A050376(m), 30) = A(30, A050376(m)) = A241025(m).
A(A050376(m), 40) = A(40, A050376(m)) = A241024(m).

A329331 Binary operation over the nonnegative integers, distributive over A003987(.,.), such that A(2^i, 2^j) = 2^A054237(i,j). Square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 8, 3, 0, 0, 4, 10, 10, 4, 0, 0, 5, 16, 9, 16, 5, 0, 0, 6, 18, 20, 20, 18, 6, 0, 0, 7, 24, 23, 32, 23, 24, 7, 0, 0, 8, 26, 30, 36, 36, 30, 26, 8, 0, 0, 9, 64, 29, 48, 33, 48, 29, 64, 9, 0, 0, 10, 66, 72, 52, 54, 54, 52, 72, 66, 10, 0, 0, 11, 72, 75, 128, 51, 40, 51, 128, 75, 72, 11, 0
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

This sequence defines a multiplication operation that goes with bitwise exclusive-or (A003987) as addition operation to form a ring over the nonnegative integers. It is isomorphic to the polynomial ring GF(2)[x,y], as is the ring defined in A329329.
The ring defined by A329329 is unusual in that it has A059897(.,.) as its addition operation, given that A059897 has more similarities to integer multiplication. A003987, which is isomorphic to A059897 as a binary operation, seems a more standard choice for an addition operator.
However, as explained in A329329, A059897 has a natural choice for mapping a generating set to the 2-dimensions (x and y) of the generating set for the additive group of GF(2)[x,y]. Instead, A003987 needs a pairing function to map its most natural generating set {2^k: k >= 0} onto {x^i * y^j: i >= 0, j >= 0}.
The choice made here was to map 2^k onto the 2 dimensions of x^i * y^j, by proceeding through x and y dimensions as when reading an array by antidiagonals. 2^0 = 1 is mapped to (x^0 * y*0) = 1, 2^1 = 2 is mapped to (x^1 * y^0) = x, 2^2 = 4 to (x^0 * y^1) = y, 8 to (x^2 * y^0) = x^2, and so on, 16 mapped to xy, 32 to y^2, 64 to x^3, etc. With this mapping, it can be shown that the result of the multiplying the polynomial images of 2^i and 2^j is the image of 2^A054237(i,j).

Examples

			Square array A(n,k) begins:
  n\k |   0     1     2     3     4     5     6     7     8     9    10
  ----+----------------------------------------------------------------
    0 |   0     0     0     0     0     0     0     0     0     0     0
    1 |   0     1     2     3     4     5     6     7     8     9    10
    2 |   0     2     8    10    16    18    24    26    64    66    72
    3 |   0     3    10     9    20    23    30    29    72    75    66
    4 |   0     4    16    20    32    36    48    52   128   132   144
    5 |   0     5    18    23    36    33    54    51   136   141   154
    6 |   0     6    24    30    48    54    40    46   192   198   216
    7 |   0     7    26    29    52    51    46    41   200   207   210
    8 |   0     8    64    72   128   136   192   200  1024  1032  1088
    9 |   0     9    66    75   132   141   198   207  1032  1025  1098
   10 |   0    10    72    66   144   154   216   210  1088  1098  1032
		

Crossrefs

Formula

A(2^i, 2^j) = 2^A054237(i,j).
A(A003987(n,m), k) = A003987(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A003987(A(n,m), A(n,k)).
Derived formulas:(Start)
A(n,k) = A(k,n).
A(n,0) = A(0,k) = 0.
A(n,1) = A(1,n) = n.
A(n, A(m,k)) = A(A(n,m), k).
(End)
Previous Showing 11-16 of 16 results.