cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A319411 Triangle read by rows: T(n,k) = number of binary vectors of length n with runs-resistance k (1 <= k <= n).

Original entry on oeis.org

2, 2, 2, 2, 2, 4, 2, 4, 6, 4, 2, 2, 12, 12, 4, 2, 6, 30, 18, 8, 0, 2, 2, 44, 44, 32, 4, 0, 2, 6, 82, 76, 74, 16, 0, 0, 2, 4, 144, 138, 172, 52, 0, 0, 0, 2, 6, 258, 248, 350, 156, 4, 0, 0, 0, 2, 2, 426, 452, 734, 404, 28, 0, 0, 0, 0, 2, 10, 790, 752, 1500, 938, 104, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 20 2018

Keywords

Comments

"Runs-resistance" is defined in A318928.
Row sums are 2,4,8,16,... (the binary vectors may begin with 0 or 1).
This is similar to A329767 but without the k = 0 column and with a different row n = 1. - Gus Wiseman, Nov 25 2019

Examples

			Triangle begins:
2,
2, 2,
2, 2, 4,
2, 4, 6, 4,
2, 2, 12, 12, 4,
2, 6, 30, 18, 8, 0,
2, 2, 44, 44, 32, 4, 0,
2, 6, 82, 76, 74, 16, 0, 0,
2, 4, 144, 138, 172, 52, 0, 0, 0,
2, 6, 258, 248, 350, 156, 4, 0, 0, 0,
2, 2, 426, 452, 734, 404, 28, 0, 0, 0, 0,
2, 10, 790, 752, 1500, 938, 104, 0, 0, 0, 0, 0,
...
Lenormand gives the first 20 rows.
The calculation of row 4 is as follows.
We may assume the first bit is a 0, and then double the answers.
vector / runs / steps to reach a single number:
0000 / 4 / 1
0001 / 31 -> 11 -> 2 / 3
0010 / 211 -> 12 -> 11 -> 2 / 4
0011 / 22 -> 2 / 2
0100 / 112 -> 21 -> 11 -> 2 / 4
0101 / 1111 -> 4 / 2
0110 / 121 -> 111 -> 3 / 3
0111 / 13 -> 11 -> 2 / 3
and we get 1 (once), 2 (twice), 3 (three times) and 4 (twice).
So row 4 is: 2,4,6,4.
		

Crossrefs

Row sums are A000079.
Column k = 2 is 2 * A032741 = A319410.
Column k = 3 is 2 * A329745 (because runs-resistance 2 for compositions corresponds to runs-resistance 3 for binary words).
The version for compositions is A329744.
The version for partitions is A329746.
The number of nonzero entries in row n > 0 is A319412(n).
The runs-resistance of the binary expansion of n is A318928.

Programs

  • Mathematica
    runsresist[q_]:=If[Length[q]==1,1,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
    Table[Length[Select[Tuples[{0,1},n],runsresist[#]==k&]],{n,10},{k,n}] (* Gus Wiseman, Nov 25 2019 *)

A329767 Triangle read by rows where T(n,k) is the number of binary words of length n >= 0 with runs-resistance k, 0 <= k <= n.

Original entry on oeis.org

1, 2, 0, 0, 2, 2, 0, 2, 2, 4, 0, 2, 4, 6, 4, 0, 2, 2, 12, 12, 4, 0, 2, 6, 30, 18, 8, 0, 0, 2, 2, 44, 44, 32, 4, 0, 0, 2, 6, 82, 76, 74, 16, 0, 0, 0, 2, 4, 144, 138, 172, 52, 0, 0, 0, 0, 2, 6, 258, 248, 350, 156, 4, 0, 0, 0, 0, 2, 2, 426, 452, 734, 404, 28, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.
Except for the k = 0 column and the n = 0 and n = 1 rows, this is the triangle appearing on page 3 of Lenormand, which is A319411. Unlike A318928, we do not here require that a(n) >= 1.
The n = 0 row is chosen to ensure that the row-sums are A000079, although the empty word arguably has indeterminate runs-resistance.

Examples

			Triangle begins:
   1
   2   0
   0   2   2
   0   2   2   4
   0   2   4   6   4
   0   2   2  12  12   4
   0   2   6  30  18   8   0
   0   2   2  44  44  32   4   0
   0   2   6  82  76  74  16   0   0
   0   2   4 144 138 172  52   0   0   0
   0   2   6 258 248 350 156   4   0   0   0
   0   2   2 426 452 734 404  28   0   0   0   0
For example, row n = 4 counts the following words:
  0000  0011  0001  0010
  1111  0101  0110  0100
        1010  0111  1011
        1100  1000  1101
              1001
              1110
		

Crossrefs

Row sums are A000079.
Column k = 2 is A319410.
Column k = 3 is 2 * A329745.
The version for compositions is A329744.
The version for partitions is A329746.
The number of nonzero entries in row n > 0 is A319412(n).
The runs-resistance of the binary expansion of n is A318928.

Programs

  • Mathematica
    runsres[q_]:=If[Length[q]==1,0,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
    Table[Length[Select[Tuples[{0,1},n],runsres[#]==k&]],{n,0,10},{k,0,n}]

A329862 Positive integers whose binary expansion has cuts-resistance 2.

Original entry on oeis.org

3, 4, 6, 9, 11, 12, 13, 18, 19, 20, 22, 25, 26, 37, 38, 41, 43, 44, 45, 50, 51, 52, 53, 74, 75, 76, 77, 82, 83, 84, 86, 89, 90, 101, 102, 105, 106, 149, 150, 153, 154, 165, 166, 169, 171, 172, 173, 178, 179, 180, 181, 202, 203, 204, 205, 210, 211, 212, 213
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The sequence of terms together with their binary expansions begins:
   3:      11
   4:     100
   6:     110
   9:    1001
  11:    1011
  12:    1100
  13:    1101
  18:   10010
  19:   10011
  20:   10100
  22:   10110
  25:   11001
  26:   11010
  37:  100101
  38:  100110
  41:  101001
  43:  101011
  44:  101100
  45:  101101
  50:  110010
		

Crossrefs

Positions of 2's in A319416.
Numbers whose binary expansion has cuts-resistance 1 are A000975.
Binary words with cuts-resistance 2 are conjectured to be A027383.
Compositions with cuts-resistance 2 are A329863.
Cuts-resistance of binary expansion without first digit is A319420.
Binary words counted by cuts-resistance are A319421 and A329860.
Compositions counted by cuts-resistance are A329861.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Select[Range[100],degdep[IntegerDigits[#,2]]==2&]

A329863 Number of compositions of n with cuts-resistance 2.

Original entry on oeis.org

0, 0, 1, 0, 3, 6, 9, 22, 47, 88, 179, 354, 691, 1344, 2617, 5042, 9709, 18632, 35639, 68010, 129556, 246202, 467188, 885036, 1674211, 3163094, 5969022, 11251676, 21189382, 39867970, 74950464, 140798302, 264313039, 495861874, 929709687, 1742193854, 3263069271, 6108762316
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The a(2) = 1 through a(7) = 22 compositions (empty column not shown):
  (1,1)  (2,2)    (1,1,3)    (3,3)      (1,1,5)
         (1,1,2)  (1,2,2)    (1,1,4)    (1,3,3)
         (2,1,1)  (2,2,1)    (4,1,1)    (2,2,3)
                  (3,1,1)    (1,1,2,2)  (3,2,2)
                  (1,1,2,1)  (1,1,3,1)  (3,3,1)
                  (1,2,1,1)  (1,2,2,1)  (5,1,1)
                             (1,3,1,1)  (1,1,2,3)
                             (2,1,1,2)  (1,1,3,2)
                             (2,2,1,1)  (1,1,4,1)
                                        (1,4,1,1)
                                        (2,1,1,3)
                                        (2,1,2,2)
                                        (2,2,1,2)
                                        (2,3,1,1)
                                        (3,1,1,2)
                                        (3,2,1,1)
                                        (1,1,2,1,2)
                                        (1,1,2,2,1)
                                        (1,2,1,1,2)
                                        (1,2,2,1,1)
                                        (2,1,1,2,1)
                                        (2,1,2,1,1)
		

Crossrefs

Column k = 2 of A329861.
Compositions with cuts-resistance 1 are A003242.
Compositions with runs-resistance 2 are A329745.
Numbers whose binary expansion has cuts-resistance 2 are A329862.
Binary words with cuts-resistance 2 are conjectured to be A027383.
Cuts-resistance of binary expansion is A319416.
Binary words counted by cuts-resistance are A319421 and A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==2&]],{n,0,10}]
  • PARI
    Ca(N) = {1/(1-sum(k=1, N, x^k/(1+x^k)))}
    A_x(N) = {my(x='x+O('x^N)); concat([0,0],Vec(-1+(1+sum(m=1,N, Ca(N)*x^(2*m)*(Ca(N)-1)/(1+x^m*(2+x^m*(1+Ca(N))))))/(1-sum(m=1,N, Ca(N)*x^(2*m)/(1+x^m*(2+x^m*(1+Ca(N))))))))}
    A_x(38) \\ John Tyler Rascoe, Feb 20 2025

Formula

G.f.: -1 + (1 + Ca(x) * Sum_{m>0} x^(2*m) * (Ca(x)-1)/(1 + x^m * (2 + x^m * (1+Ca(x)))))/(1 - Ca(x) * Sum_{m>0} x^(2*m)/(1 + x^m * (2 + x^m * (1+Ca(x))))) where Ca(x) is the g.f. for A003242. - John Tyler Rascoe, Feb 20 2025

Extensions

a(21) onwards from John Tyler Rascoe, Feb 20 2025

A329750 Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 6, 6, 1, 1, 0, 4, 9, 15, 3, 1, 0, 2, 16, 22, 22, 1, 1, 0, 0, 8, 37, 38, 41, 3, 1, 0, 0, 0, 26, 86, 69, 72, 2, 1, 0, 0, 0, 2, 78, 175, 124, 129, 3, 1, 0, 0, 0, 0, 14, 202, 367, 226, 213, 1, 1, 0, 0, 0, 0, 0, 52, 469, 750, 376, 395, 5, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
   1
   1   1
   2   1   1
   2   3   2   1
   2   6   6   1   1
   0   4   9  15   3   1
   0   2  16  22  22   1   1
   0   0   8  37  38  41   3   1
   0   0   0  26  86  69  72   2   1
   0   0   0   2  78 175 124 129   3   1
   0   0   0   0  14 202 367 226 213   1   1
   0   0   0   0   0  52 469 750 376 395   5   1
Row n = 6 counts the following compositions:
  (1,1,3,1)    (1,1,4)      (1,5)      (3,3)          (6)
  (1,3,1,1)    (4,1,1)      (2,4)      (2,2,2)
  (1,1,1,2,1)  (1,1,1,3)    (4,2)      (1,1,1,1,1,1)
  (1,2,1,1,1)  (1,2,2,1)    (5,1)
               (2,1,1,2)    (1,2,3)
               (3,1,1,1)    (1,3,2)
               (1,1,1,1,2)  (1,4,1)
               (1,1,2,1,1)  (2,1,3)
               (2,1,1,1,1)  (2,3,1)
                            (3,1,2)
                            (3,2,1)
                            (1,1,2,2)
                            (1,2,1,2)
                            (2,1,2,1)
                            (2,2,1,1)
		

Crossrefs

Row sums are A000079.
Column sums are A329768.
The version with rows reversed is A329744.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}]

A329743 Number of compositions of n with runs-resistance n - 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 9, 16, 8
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			The a(3) = 1 through a(8) = 8 compositions:
  (3)  (22)    (14)   (114)    (1123)    (12113)
       (1111)  (23)   (411)    (1132)    (12212)
               (32)   (1113)   (1141)    (13112)
               (41)   (1221)   (1411)    (21131)
               (131)  (2112)   (2122)    (21221)
               (212)  (3111)   (2212)    (31121)
                      (11112)  (2311)    (121112)
                      (11211)  (3211)    (211121)
                      (21111)  (11131)
                               (11212)
                               (11221)
                               (12211)
                               (13111)
                               (21211)
                               (111121)
                               (121111)
For example, repeatedly taking run-lengths starting with (1,2,1,1,3) gives (1,2,1,1,3) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), which is 5 steps, and 5 = 8 - 3, so (1,2,1,1,3) is counted under a(8).
		

Crossrefs

Column k = n - 3 of A329744.
Column k = 3 of A329750.
Compositions with runs-resistance 2 are A329745.

Programs

  • Mathematica
    runsres[q_]:=If[Length[q]==1,0,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-3&]],{n,10}]

A329768 Number of finite sequences of positive integers whose sum minus runs-resistance is n.

Original entry on oeis.org

8, 17, 42, 104, 242, 541, 1212, 2664, 5731, 12314
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			The a(1) = 8 and a(2) = 17 compositions whose sum minus runs-resistance is n:
  (1)        (2)
  (1,1)      (1,3)
  (1,2)      (3,1)
  (2,1)      (1,1,1)
  (1,1,2)    (1,1,3)
  (2,1,1)    (1,2,1)
  (1,1,2,1)  (1,2,2)
  (1,2,1,1)  (2,2,1)
             (3,1,1)
             (1,1,1,2)
             (1,1,3,1)
             (1,3,1,1)
             (2,1,1,1)
             (1,1,1,2,1)
             (1,2,1,1,1)
             (1,2,1,1,2)
             (2,1,1,2,1)
		

Crossrefs

A330028 Number of compositions of n with cuts-resistance <= 2.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 23, 45, 86, 159, 303, 568, 1069, 2005, 3769, 7066, 13251, 24821, 46482, 86988, 162758
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
		

Crossrefs

Sum of first three columns of A329861.
Compositions with cuts-resistance 1 are A003242.
Compositions with cuts-resistance 2 are A329863.
Compositions with runs-resistance 2 are A329745.
Numbers whose binary expansion has cuts-resistance 2 are A329862.
Binary words with cuts-resistance 2 are A027383.
Cuts-resistance of binary expansion is A319416.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]<=2&]],{n,0,10}]
Previous Showing 11-19 of 19 results.