A332338
Number of alternately co-strong compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 24, 39, 72, 125, 224, 387, 697, 1205, 2141, 3736, 6598, 11516, 20331, 35526, 62507, 109436, 192200, 336533, 590582, 1034187
Offset: 0
The a(1) = 1 through a(5) = 12 compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(1111) (131)
(212)
(221)
(1112)
(1121)
(11111)
For example, starting with the composition y = (1,6,2,2,1,1,1,1) and repeatedly taking run-lengths and reversing gives (1,6,2,2,1,1,1,1) -> (4,2,1,1) -> (2,1,1) -> (2,1) -> (1,1) -> (2). All of these have weakly increasing run-lengths and the last is a singleton, so y is counted under a(15).
The recursive (rather than alternating) version is
A332274.
The total (rather than alternating) version is (also)
A332274.
The strong version is this same sequence.
The case of reversed partitions is
A332339.
The normal version is
A332340(n) + 1 for n > 1.
Cf.
A001462,
A100883,
A181819,
A182850,
A316496,
A317257,
A329744,
A329746,
A332275,
A332292,
A332296.
-
tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tniQ]],{n,0,10}]
A332339
Number of alternately co-strong reversed integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 20, 29, 28, 40, 45, 54, 59, 82, 81, 108, 118, 141, 154, 204, 204, 255, 285, 339, 363, 458, 471, 580, 632, 741, 806, 983, 1015, 1225, 1341, 1562, 1667, 2003, 2107, 2491, 2712, 3101, 3344, 3962, 4182, 4860, 5270, 6022, 6482
Offset: 0
The a(1) = 1 through a(8) = 12 reversed partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(111) (22) (23) (24) (25) (26)
(1111) (122) (33) (34) (35)
(11111) (123) (124) (44)
(222) (133) (125)
(1122) (1222) (134)
(111111) (1111111) (233)
(1133)
(2222)
(11222)
(11111111)
For example, starting with the composition y = (1,2,3,3,4,4,4) and repeatedly taking run-lengths and reversing gives (1,2,3,3,4,4,4) -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1) -> (2) -> (1). All of these have weakly increasing run-lengths and the last is equal to (1), so y is counted under a(21).
The total (instead of alternating) version is
A316496.
Alternately strong partitions are
A317256.
The case of ordinary (not reversed) partitions is (also)
A317256.
The generalization to compositions is
A332338.
-
tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
Table[Length[Select[Sort/@IntegerPartitions[n],tniQ]],{n,0,30}]
A332295
Number of widely recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
Partitions with normal multiplicities are
A317081.
The Heinz numbers of these partitions are a proper superset of
A317492.
Accepting any constant sequence instead of just 1's gives
A332272.
The total (instead of recursive) version is
A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
-
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A329750
Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 6, 6, 1, 1, 0, 4, 9, 15, 3, 1, 0, 2, 16, 22, 22, 1, 1, 0, 0, 8, 37, 38, 41, 3, 1, 0, 0, 0, 26, 86, 69, 72, 2, 1, 0, 0, 0, 2, 78, 175, 124, 129, 3, 1, 0, 0, 0, 0, 14, 202, 367, 226, 213, 1, 1, 0, 0, 0, 0, 0, 52, 469, 750, 376, 395, 5, 1
Offset: 1
Triangle begins:
1
1 1
2 1 1
2 3 2 1
2 6 6 1 1
0 4 9 15 3 1
0 2 16 22 22 1 1
0 0 8 37 38 41 3 1
0 0 0 26 86 69 72 2 1
0 0 0 2 78 175 124 129 3 1
0 0 0 0 14 202 367 226 213 1 1
0 0 0 0 0 52 469 750 376 395 5 1
Row n = 6 counts the following compositions:
(1,1,3,1) (1,1,4) (1,5) (3,3) (6)
(1,3,1,1) (4,1,1) (2,4) (2,2,2)
(1,1,1,2,1) (1,1,1,3) (4,2) (1,1,1,1,1,1)
(1,2,1,1,1) (1,2,2,1) (5,1)
(2,1,1,2) (1,2,3)
(3,1,1,1) (1,3,2)
(1,1,1,1,2) (1,4,1)
(1,1,2,1,1) (2,1,3)
(2,1,1,1,1) (2,3,1)
(3,1,2)
(3,2,1)
(1,1,2,2)
(1,2,1,2)
(2,1,2,1)
(2,2,1,1)
The version with rows reversed is
A329744.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}]
A332272
Number of narrowly recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 8, 10, 14, 18, 23, 30, 37, 46, 52, 70, 80, 100, 116, 146, 171, 203, 236, 290, 332, 401, 458, 547, 626, 744, 851, 1004, 1157, 1353, 1553, 1821, 2110, 2434, 2810, 3250, 3741, 4304, 4949, 5661, 6510, 7450, 8501, 9657, 11078, 12506, 14329, 16185
Offset: 0
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
The strict instead of narrow version is
A330937.
The widely normal case is
A332277(n) - 1 for n > 1.
The wide version is
A332295(n) - 1.
Cf.
A000009,
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[Length[qtn]<=1,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A332576
Number of integer partitions of n that are all 1's or whose run-lengths cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 31, 35, 51, 59, 80, 97, 130, 153, 204, 244, 308, 376, 475, 564, 708, 851, 1043, 1247, 1533, 1816, 2216, 2633, 3174, 3766, 4526, 5324, 6376, 7520, 8917, 10479, 12415, 14524, 17134, 20035, 23489, 27423, 32091, 37286, 43512
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
Heinz numbers of these partitions first differ from
A317492 in having 420.
Not counting constant-1 sequences gives
A317081.
-
nQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],nQ]],{n,0,30}]
A329743
Number of compositions of n with runs-resistance n - 3.
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 9, 16, 8
Offset: 0
The a(3) = 1 through a(8) = 8 compositions:
(3) (22) (14) (114) (1123) (12113)
(1111) (23) (411) (1132) (12212)
(32) (1113) (1141) (13112)
(41) (1221) (1411) (21131)
(131) (2112) (2122) (21221)
(212) (3111) (2212) (31121)
(11112) (2311) (121112)
(11211) (3211) (211121)
(21111) (11131)
(11212)
(11221)
(12211)
(13111)
(21211)
(111121)
(121111)
For example, repeatedly taking run-lengths starting with (1,2,1,1,3) gives (1,2,1,1,3) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), which is 5 steps, and 5 = 8 - 3, so (1,2,1,1,3) is counted under a(8).
Compositions with runs-resistance 2 are
A329745.
-
runsres[q_]:=If[Length[q]==1,0,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-3&]],{n,10}]
A329768
Number of finite sequences of positive integers whose sum minus runs-resistance is n.
Original entry on oeis.org
8, 17, 42, 104, 242, 541, 1212, 2664, 5731, 12314
Offset: 1
The a(1) = 8 and a(2) = 17 compositions whose sum minus runs-resistance is n:
(1) (2)
(1,1) (1,3)
(1,2) (3,1)
(2,1) (1,1,1)
(1,1,2) (1,1,3)
(2,1,1) (1,2,1)
(1,1,2,1) (1,2,2)
(1,2,1,1) (2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,3,1)
(1,3,1,1)
(2,1,1,1)
(1,1,1,2,1)
(1,2,1,1,1)
(1,2,1,1,2)
(2,1,1,2,1)
A330937
Number of strictly recursively normal integer partitions of n.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 15, 20, 27, 35, 49, 58, 81, 100, 126, 160, 206, 246, 316, 374, 462, 564, 696, 813, 1006, 1195, 1441, 1701, 2058, 2394, 2896, 3367, 4007, 4670, 5542, 6368, 7540, 8702, 10199, 11734, 13760, 15734, 18384, 21008, 24441, 27893, 32380, 36841
Offset: 0
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(221) (321) (61) (71) (72)
(311) (411) (322) (332) (81)
(331) (422) (432)
(421) (431) (441)
(511) (521) (522)
(3211) (611) (531)
(3221) (621)
(4211) (711)
(3321)
(4221)
(4311)
(5211)
(32211)
The narrow instead of strict version is
A332272.
A wide instead of strict version is
A332295(n) - 1 for n > 1.
Cf.
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332277,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Comments