A334774
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.
Original entry on oeis.org
1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
Offset: 1
Triangle begins:
1;
3, 3;
9, 57, 24;
27, 705, 1449, 339;
81, 7617, 48615, 49695, 7392;
243, 78357, 1290234, 3650706, 2234643, 230217;
729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
The version for permutations of 1..n is
A008303(n,k-1).
-
PeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, F(#sig, D[i], 0));
}
Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) }
{ for(n=1, 8, print(Row(n))) }
A334773
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.
Original entry on oeis.org
3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2
Array begins:
======================================================
n\k | 2 3 4 5
----|-------------------------------------------------
2 | 3 12 30 60 ...
3 | 57 360 1400 4170 ...
4 | 705 7968 51750 241080 ...
5 | 7617 163584 1830000 13562040 ...
6 | 78357 3293184 64168750 759940800 ...
7 | 791589 65968128 2246625000 42560067360 ...
8 | 7944321 1319854080 78636093750 2383387566720 ...
...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
A334772
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
2, 12, 66, 36, 576, 1168, 80, 2610, 17376, 16220, 150, 8520, 129800, 448800, 202416, 252, 22680, 659560, 5748750, 10861056, 2395540, 392, 52416, 2596608, 46412200, 241987500, 253940736, 27517568, 576, 109116, 8505728, 273322980, 3121135440, 9885006250, 5807161344, 310123764
Offset: 2
Array begins:
==========================================================
n\k | 2 3 4 5
----|----------------------------------------------------
2 | 2 12 36 80 ...
3 | 66 576 2610 8520 ...
4 | 1168 17376 129800 659560 ...
5 | 16220 448800 5748750 46412200 ...
6 | 202416 10861056 241987500 3121135440 ...
7 | 2395540 253940736 9885006250 203933233280 ...
8 | 27517568 5807161344 395426250000 13051880894720 ...
...
The T(2,3) = 12 permutations of 111222 with 2 local maxima are 112122, 112212 and their rotations.
The T(3,2) = 66 permutations of 112233 with 2 local maxima are 112323, 113223, 113232, 121233, 121332, 122133, 122313, 123213, 123123, 123132, 131322 and their rotations.
A159717
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 3 local maxima.
Original entry on oeis.org
0, 0, 6, 1192, 61830, 2150688, 62178928, 1629254640, 40346856234, 965510596600, 22606163844396, 521603874280248, 11911230805813846, 269907065756299440, 6079103449024019880, 136243494317831152480, 3040751938796332410018, 67621304208554979697224, 1499043510801269678080708
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [3])[1]} \\ Andrew Howroyd, May 13 2020
A159718
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 4 local maxima.
Original entry on oeis.org
0, 0, 0, 88, 33600, 3821760, 272509552, 15313310208, 750469872312, 33813251867920, 1443455210369040, 59454199364673024, 2389923754993613176, 94450458835284703536, 3687585353084799432720, 142691482885508987276800, 5484263653598164634676600, 209677462059979688650122960
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [4])[1]} \\ Andrew Howroyd, May 13 2020
A159719
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 1480, 1268292, 279561086, 36381368048, 3573883594170, 296395007981680, 22044296362400136, 1523944523765510064, 100158396249221188476, 6351609408030664973692, 392562103869990035520330, 23810390333486683269302048, 1424190819067621511845096358
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [5])[1]} \\ Andrew Howroyd, May 13 2020
A159720
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 6 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 40272, 62954948, 24342647424, 5320007368884, 848044852469680, 111078667024032048, 12769013592631944576, 1340902091662029846456, 132008300342568131914656, 12398363733385845967412220, 1124539850663707285433353472, 99357839137277548804214431980
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [6])[1]} \\ Andrew Howroyd, May 13 2020
A334779
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly n local maxima.
Original entry on oeis.org
1, 1, 2, 6, 88, 1480, 40272, 1476944, 71865728, 4454840448, 343059301120, 32120367997696, 3593423957597184, 473387964389590016, 72533147097036867584, 12789470502905585018880, 2571336187676016073080832, 584713932920281483718459392, 149314675071137196105777217536
Offset: 0
-
\\ CircPeaksBySig defined in A334778.
a(n) = {if(n==0, 1, CircPeaksBySig(vector(n, i, 2), [n])[1])} \\ Andrew Howroyd, May 13 2020
A334780
Total number of local maxima in all permutations of 2 indistinguishable copies of 1..n arranged in a circle.
Original entry on oeis.org
1, 8, 168, 6336, 360000, 28728000, 3067243200, 422479411200, 72968229734400, 15446903472000000, 3933958530902400000, 1186723982675911680000, 418497083472072084480000, 170595438771094235458560000, 79604772050991371184000000000, 42160341403338557272473600000000
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n)={my(u=CircPeaksBySig(vector(n, i, 2), [1..n])); sum(k=1, #u, k*u[k])}
A159723
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 3 local maxima.
Original entry on oeis.org
0, 2, 924, 130672, 11798800, 882163680, 60299781248, 3933244436480, 249755233812480, 15590436752711680, 961617113393102848, 58776390094965178368, 3566492692755774439424, 215104023517101044006912, 12906638765341805641728000, 770965701556822810254376960
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 3), [3])[1]} \\ Andrew Howroyd, May 13 2020
Showing 1-10 of 18 results.
Comments