cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 5, 1, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence counts permutations of prime factors that are weakly but not strongly alternating. Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are:
n = 4    12    24     48      90     120     192       240      270
   ------------------------------------------------------------------
    11   112   1112   11112   1223   11132   1111112   111132   12232
         211   1121   11121   1322   11213   1111121   111213   13222
               1211   11211   2213   11312   1111211   111312   21223
               2111   12111   2231   21113   1112111   112131   21322
                      21111   3122   21311   1121111   113121   22132
                              3221   23111   1211111   121113   22213
                                     31112   2111111   121311   22231
                                     31211             131112   22312
                                                       131211   23122
                                                       211131   23221
                                                       213111   31222
                                                       231111   32212
                                                       311121
                                                       312111
		

Crossrefs

This is the weakly but not strictly alternating case of A008480.
Including alternating (in fact, anti-run) permutations gives A349056.
These partitions are counted by A349795, ranked by A350137.
A complementary version is A349796, ranked by A350140.
The version for compositions is A349800, ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A335452 = anti-run ordered prime factorizations.
A344652 = ordered prime factorizations w/o weakly increasing triples.
A345164 = alternating ordered prime factorizations, with twins A344606.
A345194 = alternating patterns, with twins A344605.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349060 = weakly alternating partitions, complement A349061.
A349797 = non-weakly alternating ordered prime factorizations.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[primeMS[n]],(whkQ[#]||whkQ[-#])&&MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A386635 Triangle read by rows where T(n,k) is the number of separable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of separable type iff the underlying set has a permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of separable type iff its greatest block size is at most one more than the sum of all its other blocks sizes.
This is different from separable partitions (A325534) and partitions of separable type (A336106).

Examples

			Row n = 4 counts the following set partitions:
  .  .  {{1,2},{3,4}}  {{1},{2},{3,4}}  {{1},{2},{3},{4}}
        {{1,3},{2,4}}  {{1},{2,3},{4}}
        {{1,4},{2,3}}  {{1},{2,4},{3}}
                       {{1,2},{3},{4}}
                       {{1,3},{2},{4}}
                       {{1,4},{2},{3}}
Triangle begins:
    1
    0    1
    0    0    1
    0    0    3    1
    0    0    3    6    1
    0    0   10   25   10    1
    0    0   10   75   65   15    1
    0    0   35  280  350  140   21    1
		

Crossrefs

Column k = 2 appears to be A128015.
For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386633.
The complement is counted by A386636, row sums A386634.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&];
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]!={}&]],{n,0,5},{k,0,n}]

A386636 Triangle read by rows where T(n,k) is the number of inseparable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 21, 15, 0, 0, 0, 0, 1, 28, 21, 0, 0, 0, 0, 0, 1, 92, 196, 56, 0, 0, 0, 0, 0, 1, 129, 288, 84, 0, 0, 0, 0, 0, 0, 1, 385, 1875, 1380, 210, 0, 0, 0, 0, 0, 0, 1, 561, 2860, 2145, 330, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of inseparable type iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of inseparable type iff its greatest block size is at least 2 more than the sum of all its other block sizes.
This is different from inseparable partitions (A325535) and partitions of inseparable type (A386638 or A025065).

Examples

			Row n = 6 counts the following set partitions:
  .  {123456}  {1}{23456}  {1}{2}{3456}  .  .  .
               {12}{3456}  {1}{2345}{6}
               {13}{2456}  {1}{2346}{5}
               {14}{2356}  {1}{2356}{4}
               {15}{2346}  {1}{2456}{3}
               {16}{2345}  {1234}{5}{6}
               {1234}{56}  {1235}{4}{6}
               {1235}{46}  {1236}{4}{5}
               {1236}{45}  {1245}{3}{6}
               {1245}{36}  {1246}{3}{5}
               {1246}{35}  {1256}{3}{4}
               {1256}{34}  {1345}{2}{6}
               {1345}{26}  {1346}{2}{5}
               {1346}{25}  {1356}{2}{4}
               {1356}{24}  {1456}{2}{3}
               {1456}{23}
               {12345}{6}
               {12346}{5}
               {12356}{4}
               {12456}{3}
               {13456}{2}
Triangle begins:
    0
    0    0
    0    1    0
    0    1    0    0
    0    1    4    0    0
    0    1    5    0    0    0
    0    1   21   15    0    0    0
    0    1   28   21    0    0    0    0
    0    1   92  196   56    0    0    0    0
    0    1  129  288   84    0    0    0    0    0
    0    1  385 1875 1380  210    0    0    0    0    0
		

Crossrefs

For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386634.
The complement is counted by A386635, row sums A386633.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]=={}&]],{n,0,5},{k,0,n}]

A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2025

Keywords

Comments

A set partition is separable iff the underlying set has a permutation whose adjacent elements all belong to different blocks. Note that separability only depends on the sizes of the blocks.
Conjecture: a(n) > 0 iff the multiset of prime factors of n has a permutation with all distinct run lengths.

Examples

			The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable.
The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3.
The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable.
The a(n) families for n = 2, 96, 384, 1536, 3456, 20736:
  {{1}}  {{1},{5}}    {{1},{7}}    {{1},{9}}    {{3},{7}}      {{4},{8}}
         {{1},{2,3}}  {{1},{2,5}}  {{1},{2,7}}  {{3},{1,6}}    {{4},{1,7}}
                      {{1},{3,4}}  {{1},{3,6}}  {{3},{2,5}}    {{4},{2,6}}
                                   {{1},{4,5}}  {{7},{1,2}}    {{4},{3,5}}
                                                {{1,2},{3,4}}  {{8},{1,3}}
                                                               {{1,3},{2,6}}
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
For inseparable instead of separable we have A386582, see A386632.
This is the separable case of A386587 (ordered version A382525).
A000110 counts set partitions, ordered A000670.
A003242 and A335452 count separations, ranks A333489.
A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
A239455 counts Look-and-Say partitions, complement A351293.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts partitions of separable type, ranks A335127, sums of A386585.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]];
    seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])];
    Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}]

A335520 Number of (1,2,3)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 30, 60, 120, 210, 180, 480:
  (123)  (1123)  (11123)  (1234)  (11223)  (1111123)
         (1213)  (11213)  (1243)  (11232)  (1111213)
         (1231)  (11231)  (1324)  (12123)  (1111231)
                 (12113)  (1342)  (12132)  (1112113)
                 (12131)  (1423)  (12213)  (1112131)
                 (12311)  (2134)  (12231)  (1112311)
                          (2314)  (12312)  (1121113)
                          (2341)  (12321)  (1121131)
                          (3124)  (21123)  (1121311)
                          (4123)  (21213)  (1123111)
                                  (21231)  (1211113)
                                           (1211131)
                                           (1211311)
                                           (1213111)
                                           (1231111)
		

Crossrefs

Positions of nonzero terms are A000977.
These permutations are ranked by A335479.
These compositions are counted by A335514.
Patterns matching this pattern are counted by A335515.
The complement A335521 is the avoiding version.
Permutations of prime indices are counted by A008480.
Patterns are counted by A000670 and ranked by A333217.
Anti-run permutations of prime indices are counted by A335452.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				

Formula

For n > 0, a(n) + A335521(n) = A008480(n).

A374252 Irregular triangle read by rows where T(n,k) is the number of permutations of the prime factors of n with k runs.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 2, 1, 1, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0, 2, 1, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 2, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 6, 1, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 2, 2, 1, 0, 2, 0, 2, 0, 2, 2, 0, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 07 2024

Keywords

Comments

An alternative form of this sequence (with the same data) has offset 1 and begins with an empty row.
Note that the prime factors of n are separable (A335433) iff the last term of row n is positive.

Examples

			The T(36,3) = 2 permutations are (2,3,3,2) and (3,2,2,3).
Row n = 72 counts the following permutations:
  .  (2,2,2,3,3)  (2,2,3,3,2)  (2,2,3,2,3)  (2,3,2,3,2)
     (3,3,2,2,2)  (2,3,3,2,2)  (2,3,2,2,3)
                  (3,2,2,2,3)  (3,2,2,3,2)
                               (3,2,3,2,2)
Triangle begins:
   1:
   2: 1
   3: 1
   4: 1  0
   5: 1
   6: 0  2
   7: 1
   8: 1  0  0
   9: 1  0
  10: 0  2
  11: 1
  12: 0  2  1
  13: 1
  14: 0  2
  15: 0  2
  16: 1  0  0  0
  17: 1
  18: 0  2  1
  19: 1
  20: 0  2  1
		

Crossrefs

Row-lengths are A001222.
Row-sums are A008480 (number of permutations of prime factors).
Column k = 1 is A069513.
For compositions instead of permutations of prime factors we have A238130.
Last column is A335452 (where k = A001222(n)), which counts separations.
Position of the last positive term in row n is A373957(n).
The number of zeros at the end of row n is A374246(n).
The number of nonzero terms in row n is A374247(n).
A001221 counts distinct prime factors.
A003242 counts run-compressed compositions, i.e., anti-runs.
A124767 counts runs in standard compositions, anti-runs A333381.
A333755 counts compositions by number of runs.
A335433 lists separable numbers, complement A335448.
A374250 maximizes sum of run-compression, for indices A373956.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Length[Select[Permutations[prifacs[n]], Length[Split[#]]==k&]],{n,100},{k,PrimeOmega[n]}]

A348381 Number of inseparable factorizations of n that are not a twin (x*x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347706 at a(216) = 3, A347706(216) = 4.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is inseparable if it has no permutation that is an anti-run, meaning there are always adjacent equal parts. Alternatively, a multiset is inseparable if its maximal multiplicity is at most one plus the sum of its remaining multiplicities.

Examples

			The a(n) factorizations for n = 96, 192, 384, 576:
  2*2*2*12      3*4*4*4         4*4*4*6           4*4*4*9
  2*2*2*2*6     2*2*2*24        2*2*2*48          2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*2*24        2*2*2*2*36
                2*2*2*2*2*6     2*2*2*2*3*8       2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*4*6       2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*2*12      2*2*2*2*2*18
                                2*2*2*2*2*2*6     2*2*2*2*3*12
                                2*2*2*2*2*3*4     2*2*2*2*2*2*9
                                2*2*2*2*2*2*2*3   2*2*2*2*2*3*6
                                                  2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions not of this type are counted by A325534 - A000035.
Partitions of this type are counted by A325535 - A000035.
Allowing twins gives A333487.
The case without an alternating permutation is A347706, with twins A348380.
The complement is counted by A348383, without twins A335434.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A344654 counts non-twin partitions without an alternating permutation.
A348382 counts non-anti-run compositions that are not a twin.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!MatchQ[#,{x_,x_}]&&Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n > 1) = A333487(n) - A010052(n).
a(2^n) = A325535(n) - 1 for odd n, otherwise A325535(n).

A335449 Number of (1,2,1)-avoiding permutations of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 3, 1, 2, 3, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2020

Keywords

Comments

Depends only on unsorted prime signature (A124010), but not only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 2, 10, 36, 54, 324, 30, 1458, 90:
  (1)  (13)  (1122)  (1222)  (112222)  (123)  (1222222)  (1223)
       (31)  (2112)  (2122)  (211222)  (132)  (2122222)  (1322)
             (2211)  (2212)  (221122)  (213)  (2212222)  (2123)
                     (2221)  (222112)  (231)  (2221222)  (2213)
                             (222211)  (312)  (2222122)  (2231)
                                       (321)  (2222212)  (3122)
                                              (2222221)  (3212)
                                                         (3221)
		

Crossrefs

The matching version is A335446.
Patterns are counted by A000670.
(1,2,1)-avoiding patterns are counted by A001710.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are counted by A333175.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A335448.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.
(1,2,1)-avoiding compositions are ranked by A335467.
(1,2,1)-avoiding compositions are counted by A335471.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				

A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347050 at a(216) = 28, A347050(216) = 27.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.

Examples

			The a(216) = 28 factorizations:
  (2*2*2*3*3*3)  (2*2*2*3*9)  (2*2*6*9)   (3*8*9)   (3*72)   (216)
                 (2*2*3*3*6)  (2*3*4*9)   (4*6*9)   (4*54)
                 (2*3*3*3*4)  (2*3*6*6)   (2*2*54)  (6*36)
                              (3*3*4*6)   (2*3*36)  (8*27)
                              (2*2*3*18)  (2*4*27)  (9*24)
                              (2*3*3*12)  (2*6*18)  (12*18)
                                          (2*9*12)  (2*108)
                                          (3*3*24)
                                          (3*4*18)
                                          (3*6*12)
The a(270) = 20 factorizations:
  (2*3*3*3*5)  (2*3*5*9)   (5*6*9)   (3*90)   (270)
               (3*3*5*6)   (2*3*45)  (5*54)
               (2*3*3*15)  (2*5*27)  (6*45)
                           (2*9*15)  (9*30)
                           (3*3*30)  (10*27)
                           (3*5*18)  (15*18)
                           (3*6*15)  (2*135)
                           (3*9*10)
		

Crossrefs

Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
Partitions of this type are counted by A325534(n) + A000035(n + 1).
Partitions of this type are ranked by A335433 \/ A001248.
Partitions not of this type are counted by A325535(n) - A000035(n + 1).
Partitions not of this type are ranked by A345193 = A335448 \ A001248.
Not allowing twins gives A335434, complement A333487,
The case with an alternating permutation is A347050, no twins A348379.
The case without an alternating permutation is A347706, no twins A348380.
The complement is counted by A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A003242 counts anti-run compositions, ranked by A333489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}]

Formula

a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0.

A348611 Number of ordered factorizations of n with no adjacent equal factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 14, 1, 3, 3, 6, 1, 13, 1, 7, 3, 3, 3, 17, 1, 3, 3, 14, 1, 13, 1, 6, 6, 3, 1, 29, 1, 6, 3, 6, 1, 14, 3, 14, 3, 3, 1, 36, 1, 3, 6, 14, 3, 13, 1, 6, 3, 13, 1, 45, 1, 3, 6, 6, 3, 13, 1, 29, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2021

Keywords

Comments

First differs from A348610 at a(24) = 14, A348610(24) = 12.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
In analogy with Carlitz compositions, these may be called Carlitz ordered factorizations.

Examples

			The a(n) ordered factorizations without adjacent equal factors for n = 1, 6, 12, 16, 24, 30, 32, 36 are:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*3*4   2*3*5           2*3*6
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3   5*3*2           3*6*2
                             4*3*2                   6*2*3
                                                     6*3*2
                                                     2*3*2*3
                                                     3*2*3*2
Thus, of total A074206(12) = 8 ordered factorizations of 12, only factorizations 2*2*3 and 3*2*2 (see A348616) are not included in this count, therefore a(12) = 6. - _Antti Karttunen_, Nov 12 2021
		

Crossrefs

The additive version (compositions) is A003242, complement A261983.
The additive alternating version is A025047, ranked by A345167.
Factorizations without a permutation of this type are counted by A333487.
As compositions these are ranked by A333489, complement A348612.
Factorizations with a permutation of this type are counted by A335434.
The non-alternating additive version is A345195, ranked by A345169.
The alternating case is A348610, which is dominated at positions A122181.
The complement is counted by A348616.
A001055 counts factorizations, strict A045778, ordered A074206.
A325534 counts separable partitions, ranked by A335433.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A348613 counts non-alternating ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    antirunQ[y_]:=Length[y]==Length[Split[y]]
    Table[Length[Select[ordfacs[n],antirunQ]],{n,100}]
  • PARI
    A348611(n, e=0) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d!=e), s += A348611(n/d, d))); (s)); \\ Antti Karttunen, Nov 12 2021

Formula

a(n) = A074206(n) - A348616(n).
Previous Showing 41-50 of 75 results. Next