cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A345194 Number of alternating patterns of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 102, 562, 3618, 26586, 219798, 2018686, 20393790, 224750298, 2683250082, 34498833434, 475237879950, 6983085189454, 109021986683046, 1802213242949602, 31447143854808378, 577609702827987882, 11139837273501641502, 225075546284489412854
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
The version with twins (A344605) is identical to this sequence except with a(2) = 3 instead of 2.
From Gus Wiseman, Jan 16 2022: (Start)
Conjecture: Also the number of weakly up/down patterns of length n, where a sequence is weakly up/down if it is alternately weakly increasing and weakly decreasing, starting with an increase. For example, the a(0) = 1 through a(3) = 6 weakly up/down patterns are:
() (1) (1,1) (1,1,1)
(2,1) (1,1,2)
(2,1,1)
(2,1,2)
(2,1,3)
(3,1,2)
(End)

Examples

			The a(0) = 1 through a(3) = 6 alternating patterns:
  ()  (1)  (1,2)  (1,2,1)
           (2,1)  (1,3,2)
                  (2,1,2)
                  (2,1,3)
                  (2,3,1)
                  (3,1,2)
		

Crossrefs

The version for permutations is A001250, complement A348615.
The version for compositions is A025047, complement A345192.
The version with twins (x,x) is A344605.
The version for perms of prime indices is A345164, complement A350251.
The version for factorizations is A348610, complement A348613, weak A349059.
The weak version is A349058, complement A350138, compositions A349052.
The complement is counted by A350252.
A000670 = patterns, ranked by A333217.
A003242 = anti-run compositions.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A129852 and A129853 = up/down and down/up compositions.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],wigQ]],{n,0,6}]
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, x, 2*F(k-2,-x)/F(k-1,x)-2-(k-2)*x) + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n) = 2*A350354(n) for n >= 2. - Andrew Howroyd, Feb 04 2022

Extensions

a(10)-a(18) from Alois P. Heinz, Dec 10 2021
Terms a(19) and beyond from Andrew Howroyd, Feb 04 2022

A335434 Number of separable factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 2, 6, 16, 12, 30, 24, 36, 48, 60:
  2  6    16     12     30     24     36       48       60
     2*3  2*8    2*6    5*6    3*8    4*9      6*8      2*30
          2*2*4  3*4    2*15   4*6    2*18     2*24     3*20
                 2*2*3  3*10   2*12   3*12     3*16     4*15
                        2*3*5  2*2*6  2*2*9    4*12     5*12
                               2*3*4  2*3*6    2*3*8    6*10
                                      3*3*4    2*4*6    2*5*6
                                      2*2*3*3  3*4*4    3*4*5
                                               2*2*12   2*2*15
                                               2*2*3*4  2*3*10
                                                        2*2*3*5
		

Crossrefs

The version for partitions is A325534.
The inseparable version is A333487.
The version for multisets with prescribed multiplicities is A335127.
Factorizations are A001055.
Anti-run compositions are A003242.
Inseparable partitions are A325535.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&]],{n,100}]

Formula

A333487(n) + a(n) = A001055(n).

A335127 A multiset whose multiplicities are the prime indices of n is separable.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 77, 80, 81, 84, 90, 96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140, 143, 144, 147, 150, 154, 160, 162, 165
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The sequence together with the corresponding multisets begins:
   1: {}
   2: {1}
   4: {1,2}
   6: {1,1,2}
   8: {1,2,3}
   9: {1,1,2,2}
  12: {1,1,2,3}
  15: {1,1,1,2,2}
  16: {1,2,3,4}
  18: {1,1,2,2,3}
  20: {1,1,1,2,3}
  24: {1,1,2,3,4}
  25: {1,1,1,2,2,2}
  27: {1,1,2,2,3,3}
  30: {1,1,1,2,2,3}
		

Crossrefs

The complement is A335126.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Inseparable factorizations are A333487.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{_,x_,x_,_}]&]!={}&]

A335125 Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
An anti-run is a sequence with no adjacent equal parts.

Examples

			The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
  (1)  (12)  (1212131)  (123)  (121213)  (12123)
       (21)  (1213121)  (132)  (121231)  (12132)
             (1312121)  (213)  (121312)  (12312)
                        (231)  (121321)  (12321)
                        (312)  (123121)  (13212)
                        (321)  (131212)  (21213)
                               (132121)  (21231)
                               (212131)  (21312)
                               (213121)  (21321)
                               (312121)  (23121)
                                         (31212)
                                         (32121)
		

Crossrefs

Positions of zeros are A335126.
Positions of nonzeros are A335127.
The version for the prime indices themselves is A335452.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Separable factorizations are A335434.
Inseparable partitions are ranked by A335448.
Patterns contiguously matched by compositions are A335457.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A128695 Number of compositions of n with parts in N which avoid the adjacent pattern 111.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 24, 46, 89, 170, 324, 618, 1183, 2260, 4318, 8249, 15765, 30123, 57556, 109973, 210137, 401525, 767216, 1465963, 2801115, 5352275, 10226930, 19541236, 37338699, 71345449, 136324309, 260483548, 497722578, 951030367
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Examples

			From _Gus Wiseman_, Jul 06 2020: (Start)
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
(End)
		

Crossrefs

Column k=0 of A232435.
The matching version is A335464.
Contiguously (1,1)-avoiding compositions is A003242.
Contiguously (1,1)-matching compositions are A261983.
Compositions with some part > 2 are A008466
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Patterns contiguously matched by a given partition are A335516.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    nn=33;CoefficientList[Series[1/(1-Sum[(x^i+x^(2i))/(1+x^i+x^(2i)),{i,1,nn}]),{x,0,nn}],x] (* Geoffrey Critzer, Nov 23 2013 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,x_,x_,_}]&]],{n,13}] (* Gus Wiseman, Jul 06 2020 *)

Formula

G.f.: 1/(1-Sum(i>=1, x^i*(1+x^i)/(1+x^i*(1+x^i)) ) ).
a(n) ~ c * d^n, where d is the root of the equation Sum_{k>=1} 1/(d^k + 1/(1 + d^k)) = 1, d=1.9107639262818041675000243699745706859615884029961947632387839..., c=0.4993008137128378086219448701860326113802027003939127932922782... - Vaclav Kotesovec, May 01 2014, updated Jul 07 2020
For n>=2, a(n) = A091616(n) + A003242(n). - Vaclav Kotesovec, Jul 07 2020

A333487 Number of inseparable factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 4, 16, 96, 144, 64, 192:
  2*2  4*4      2*2*2*12     12*12        8*8          3*4*4*4
       2*2*2*2  2*2*2*2*6    2*2*2*18     4*4*4        2*2*2*24
                2*2*2*2*2*3  2*2*2*2*9    2*2*2*8      2*2*2*2*12
                             2*2*2*2*3*3  2*2*2*2*4    2*2*2*2*2*6
                                          2*2*2*2*2*2  2*2*2*2*3*4
                                                       2*2*2*2*2*2*3
		

Crossrefs

The version for partitions is A325535.
The version for multisets with prescribed multiplicities is A335126.
The separable version is A335434.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n) + A335434(n) = A001055(n).

A335516 Number of normal patterns contiguously matched by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

First differs from A181796 at a(180) = 9, A181796(180) = 10.
First differs from A335549 at a(90) = 7, A335549(90) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The a(n) patterns for n = 2, 30, 12, 60, 120, 540, 1500:
  ()   ()     ()     ()      ()       ()        ()
  (1)  (1)    (1)    (1)     (1)      (1)       (1)
       (12)   (11)   (11)    (11)     (11)      (11)
       (123)  (12)   (12)    (12)     (12)      (12)
              (112)  (112)   (111)    (111)     (111)
                     (123)   (112)    (112)     (112)
                     (1123)  (123)    (122)     (122)
                             (1112)   (1112)    (123)
                             (1123)   (1122)    (1123)
                             (11123)  (1222)    (1222)
                                      (11222)   (1233)
                                      (12223)   (11233)
                                      (112223)  (12333)
                                                (112333)
		

Crossrefs

The version for standard compositions is A335458.
The not necessarily contiguous version is A335549.
Patterns are counted by A000670 and ranked by A333217.
A number's prime indices are given in the rows of A112798.
Contiguous subsequences of standard compositions are A124771.
Contiguous sub-partitions of prime indices are counted by A335519.
Minimal avoided patterns of prime indices are counted by A335550.
Patterns contiguously matched by partitions are counted by A335838.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[primeMS[n],{_,s___,_}:>{s}]]],{n,100}]

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A335464 Number of compositions of n with a run of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 8, 18, 39, 86, 188, 406, 865, 1836, 3874, 8135, 17003, 35413, 73516, 152171, 314151, 647051, 1329936, 2728341, 5587493, 11424941, 23327502, 47567628, 96879029, 197090007, 400546603, 813258276, 1649761070, 3343936929, 6772740076, 13707639491
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions contiguously matching the pattern (1,1,1).

Examples

			The a(3) = 1 through a(7) = 18 compositions:
  (111)  (1111)  (1112)   (222)     (1114)
                 (2111)   (1113)    (1222)
                 (11111)  (3111)    (2221)
                          (11112)   (4111)
                          (11121)   (11113)
                          (12111)   (11122)
                          (21111)   (11131)
                          (111111)  (13111)
                                    (21112)
                                    (22111)
                                    (31111)
                                    (111112)
                                    (111121)
                                    (111211)
                                    (112111)
                                    (121111)
                                    (211111)
                                    (1111111)
		

Crossrefs

Compositions contiguously avoiding (1,1) are A003242.
Compositions with some part > 2 are A008466.
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions contiguously avoiding (1,1,1) are A128695.
Compositions with adjacent parts coprime are A167606.
Compositions contiguously matching (1,1) are A261983.
Compositions with all equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> ceil(2^(n-1))-b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,x_,x_,_}]&]],{n,0,10}]
    (* Second program: *)
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[Abs[t] != j,
         b[n - j, j], If[t == -j, 0, b[n - j, -j]]], {j, 1, n}]];
    a[n_] := Ceiling[2^(n-1)] - b[n, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

a(n) = A011782(n) - A128695(n). - Alois P. Heinz, Jul 06 2020

Extensions

a(23)-a(35) from Alois P. Heinz, Jul 06 2020

A335549 Number of normal patterns matched by the multiset of prime indices of n in weakly increasing order.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

First differs from A181796 at a(90) = 8 A181796(90) = 7.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The Heinz number of (1,2,2,3) is 90 and it matches 8 patterns: (), (1), (11), (12), (112), (122), (123), (1223); so a(90) = 8.
		

Crossrefs

The version for standard compositions instead of prime indices is A335454.
Permutations of prime indices are counted by A008480.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Subset-sums are counted by A304792 and ranked by A299701.
Patterns matched by compositions of n are counted by A335456(n).
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@Subsets[primeMS[n]]]],{n,100}]
Previous Showing 11-20 of 29 results. Next