cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A337816 Numbers that can be written as (m * sum of digits of m) for some m.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 22, 25, 36, 40, 49, 52, 63, 64, 70, 81, 88, 90, 100, 112, 115, 124, 136, 144, 160, 162, 175, 190, 198, 202, 205, 208, 220, 238, 243, 250, 252, 280, 301, 306, 319, 324, 333, 352, 360, 364, 370, 400, 405, 412, 418, 424, 427, 448, 460, 468, 484, 486, 490
Offset: 1

Views

Author

Bernard Schott, Sep 23 2020

Keywords

Comments

If 3 divides a(n), then 9 divides a(n).

Examples

			10 = 10 * (1+0);
22 = 11 * (1+1).
		

Crossrefs

Range of A057147 and of A117570.
Similar sequences: A176995 (m + sum of digits of m), A336826 (m * product of digits of m), A337718 (m + product of digits of m).
Cf. A337817.
Some subsequences: A011557, A052268, A093141.

Programs

  • Mathematica
    m = 500; Select[Union @ Table[k * Plus @@ IntegerDigits[k], {k, 0, m}], # <= m &] (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    is(k)={if(k==0, return(1)); fordiv(k, d, if(d*sumdigits(d)==k, return(1))); 0} \\ Andrew Howroyd, Sep 23 2020

A336879 a(n) is the product of the decimal digits of A336876(n).

Original entry on oeis.org

0, 1, 2, 3, 1, 4, 2, 5, 6, 3, 2, 7, 4, 8, 5, 9, 4, 3, 6, 1, 7, 6, 8, 4, 9, 8, 2, 2, 10, 5, 9, 12, 8, 3, 6, 14, 3, 12, 2, 16, 4, 4, 7, 12, 10, 18, 15, 4, 5, 18, 6, 16, 6, 12, 5, 21, 6, 15, 9, 4, 4, 20, 24, 3, 8, 6, 8, 14, 27, 9, 20, 24, 1, 18, 8, 9, 10, 6, 16
Offset: 1

Views

Author

Rémy Sigrist, Aug 06 2020

Keywords

Examples

			For n = 26:
- A336876(26) = 24,
- so a(26) = 2*4 = 8.
		

Crossrefs

Programs

  • C
    See Links section.

Formula

a(n) = A007954(A336876(n)).
a(n) * A336876(n) = A336826(n).

A336864 Bogotá numbers k such that k + 1 is also Bogotá number.

Original entry on oeis.org

0, 24, 2510, 5210, 8991, 56384, 348732, 460719, 867839, 28997919, 193889375, 254181375, 419321664, 1018179999, 2654951424, 1297015971839, 62061633644031
Offset: 1

Views

Author

Seiichi Manyama, Aug 06 2020

Keywords

Comments

a(18) > 10^15 if it exists. - David A. Corneth, Aug 06 2020
From Chai Wah Wu, Aug 17 2020: (Start)
The following numbers are terms:
2805402158142975 = 153931531311*(1*5*3*9*3*1*5*3*1*3*1*1) = 111822471227*(1*1*1*8*2*2*4*7*1*2*2*7) - 1.
8748948067725824 = 2441112742111*(2*4*4*1*1*1*2*7*4*2*1*1*1) = 53339113353*(5*3*3*3*9*1*1*3*3*5*3) - 1.
(End)

Examples

			   n | a(n)                               a(n)+1
-----+------------------------------------------------------------------
   1 | 0 = 0 * 0                          1 = 1 * 1
   2 | 24 = 12 * (1*2)                    25 = 5 * 5
   3 | 2510 = 251 * (2*5*1)               2511 = 93 * (9*3)
   4 | 5210 = 521 * (5*2*1)               5211 = 193 * (1*9*3)
   5 | 8991 = 333 * (3*3*3)               8992 = 1124 * (1*1*2*4)
   6 | 56384 = 881 * (8*8*1)              56385 = 537 * (5*3*7)
   7 | 348732 = 3229 * (3*2*2*9)          348733 = 7117 * (7*1*1*7)
   8 | 460719 = 7313 * (7*3*1*3)          460720 = 11518 * (1*1*5*1*8)
   9 | 867839 = 17711 * (1*7*7*1*1)       867840 = 5424 * (5*4*2*4)
  10 | 28997919 = 119333 * (1*1*9*3*3*3)  28997920 = 51782 * (5*1*7*8*2)
		

Crossrefs

Cf. A336826.

Extensions

a(11)-a(17) from David A. Corneth, Aug 06 2020

A337100 Numbers that have at least 4 different representations as the product of a number and of its decimal digits.

Original entry on oeis.org

0, 549504, 1578092544, 12276847296, 28961412480, 35998381440, 87012926784, 118082893824, 259456659840, 335449175040, 397315715328, 579305502720, 672777778176, 712539265536, 741360356352, 863562591360, 1138944651264, 1264664088576, 1276070713344, 1300488037632
Offset: 1

Views

Author

Chai Wah Wu, Aug 15 2020

Keywords

Comments

Subsequence of A337054. a(61) = 20150684596224 is the smallest positive number with 5 representations. Other terms with 5 representations include 242374224347136, 1461825635235840, 1761950567301120, 3194185120277760, 3415710732779520.

Examples

			a(3) = 12276847296 = 676634*(6*7*6*6*3*4) = 773296*(7*7*3*2*9*6) = 2368219*(2*3*6*8*2*1*9) = 12179412*(1*2*1*7*9*4*1*2).
		

Crossrefs

A337733 Numbers that can be written as (k + sum of digits of k) for some k, also as (m + product of digits of m) for some m, and finally as (q * product of digits of q) for some q.

Original entry on oeis.org

4, 16, 24, 56, 81, 88, 138, 144, 192, 242, 250, 297, 366, 408, 456, 516, 520, 522, 564, 575, 704, 744, 777, 795, 819, 884, 900, 912, 966, 1008, 1053, 1071, 1080, 1104, 1134, 1250, 1312, 1316, 1375, 1512, 1520, 1608, 1644, 1680, 1712, 1778, 1928, 1950, 2025, 2048, 2072
Offset: 1

Views

Author

Bernard Schott, Sep 18 2020

Keywords

Comments

Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983, but do they belong also to A337718?

Examples

			4 = 2 + 2 = 2 + 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4;
24 = 21 + (2+1) = 17 + (1*7) = 12 * (1*2);
56 = 46 + (4+6) = 51 + (5*1) = 14 * (1*4);
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9.
		

Crossrefs

Intersection of A176995, A336826 and A337718.
Intersection of A336983 and A337718.

Programs

  • Mathematica
    m = 2100; Select[Intersection @@ Union /@ Transpose[Table[{n + Plus @@ (d = IntegerDigits[n]), n + (p = Times @@ d), n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    isok(m) = {if (m==0, return (1)); for (k=1, m,  if (k+vecprod(digits(k)) == m, return (1)); ); } \\ A337718
    listb(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ A336983
    lista(nn) = select(x->isok(x), listb(nn)); \\ Michel Marcus, Sep 18 2020

Extensions

More terms from Michel Marcus, Sep 18 2020

A337839 Numbers that can be written as (k + sum of digits of k) for some k, then as (m + product of digits of m) for some m, also as (q * product of digits of q) for some q, and finally as (t * sum of digits of t) for some t.

Original entry on oeis.org

4, 16, 81, 88, 144, 250, 520, 900, 1008, 1053, 1134, 2025, 2304, 2655, 3726, 4680, 6408, 6624, 9928, 12024, 12150, 12510, 13608, 14256, 15480, 16408, 17128, 17172, 18304, 19152, 19288, 19602, 23310, 24336, 25110, 26550, 29358, 32896, 32968, 36864, 37485, 38592
Offset: 1

Views

Author

Bernard Schott, Sep 25 2020

Keywords

Comments

Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m and also as (t * sum of digits of t) for some t.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983 but do they belong also to A337718 and A337816?
Observation: 7 of the first 13 terms are perfect squares: 4, 16, 81, 144, 900, 2025, 2304 (see examples).

Examples

			4 = 2 + 2 = 2 + 2 = 2 * 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4 = 4 * 4;
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9 = 9 * 9;
144 = 135 + (1+3+5) = 128 + (1*2*8) = 18 * (1*8) = 24 * (2+4).
		

Crossrefs

Intersection of A176995, A336826, A337718 and A337816.
Intersection of A336983, A337718 and A337816.
Intersection of A337733 and A337816.

Programs

  • Mathematica
    m = 40000; Select[Intersection @@ Union /@ Transpose[Table[{n + (s = Plus @@ (d = IntegerDigits[n])), n + (p = Times @@ d), n*s, n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    lista(nn) = {my(vd = vector(nn, k, digits(k)), vs = vector(nn, k, vecsum(vd[k])), vp = vector(nn, k, vecprod(vd[k])), vsp = Set(vector(nn, k, k+vp[k])), vss = Set(vector(nn, k, k+vs[k])), vps = Set(vector(nn, k, k*vs[k])), vpp = Set(vector(nn, k, k*vp[k])), vk = vector(nn, k, k)); Vec(setintersect(vk, setintersect(vsp, setintersect(vss, setintersect(vps, vpp)))));} \\ Michel Marcus, Oct 01 2020

Extensions

Terms a(7) and beyond from Amiram Eldar, Sep 25 2020
Previous Showing 11-16 of 16 results.