cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A343372 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 4) missing three edges, where exactly two removed edges are incident to the same vertex in the 3-point set and exactly two removed edges are incident to the same vertex in the other set.

Original entry on oeis.org

112, 922, 6880, 49450, 350032, 2461882, 17268160, 120982090, 847189552, 5931271642, 41521735840, 290660653930, 2034650086672, 14242627134202, 99698619521920, 697891025400970, 4885239244049392
Offset: 4

Views

Author

Steven Schlicker, Apr 12 2021

Keywords

Comments

Start with a complete bipartite graph K(3,n) with vertex sets A and B where |A| = 3 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where exactly two removed edges are incident to the same point in A and exactly two removed edges are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 3 X n matrices (with n at least 4) with three fixed zero entries where exactly two zero entries occur in one row and exactly two zero entries occur in one column, with no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 4) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing three edges, where exactly two removed edges are incident to the same vertex in A and exactly two removed edges are incident to the same vertex in B.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Drop[CoefficientList[Series[2 x^4*(56 - 155 x + 105 x^2)/(1 - 11 x + 31 x^2 - 21 x^3), {x, 0, 20}], x], 4] (* Michael De Vlieger, Apr 13 2021 *)
    LinearRecurrence[{11,-31,21},{112,922,6880},20] (* Harvey P. Dale, Apr 06 2025 *)

Formula

a(n) = 3*7^(n-2) - 4*3^(n-2) + 1.
G.f.: 2*x^4*(56 - 155*x + 105*x^2)/(1 - 11*x + 31*x^2 - 21*x^3). - Stefano Spezia, Apr 13 2021

A343374 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 4) missing three edges, where exactly two removed edges are incident to the same vertex in the 5-point set and exactly two removed edges are incident to the same vertex in the other set.

Original entry on oeis.org

58984, 2445394, 86336272, 2843754442, 90733504504, 2851869796354, 88998264600352, 2767824089452282, 85935878802252424, 2666013369738472114, 82676439390965238832, 2563420051241406849322, 79472778433612932113944, 2463757486872117920024674, 76378002443759735050203712
Offset: 4

Views

Author

Steven Schlicker, Apr 12 2021

Keywords

Comments

Start with a complete bipartite graph K(5,n) with vertex sets A and B where |A| = 5 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where exactly two removed edges are incident to the same point in A and exactly two removed edges are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 5 X n matrices (with n at least 4) with three fixed zero entries where exactly two zero entries occur in one row and exactly two zero entries occur in one column, with no zero rows or columns.
Take a complete bipartite graph K(5,n) (with n at least 4) having parts A and B where |A| = 5. This sequence gives the number of edge covers of the graph obtained from this K(5,n) graph after removing three edges, where exactly two removed edges are incident to the same vertex in A and exactly two removed edges are incident to the same vertex in B.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 105*31^(n-2) - 217*15^(n-2) + 148*7^(n-2) - 13*3^(n-1) + 3.
G.f.: 2*x^4*(29492 - 458347*x + 3025391*x^2 - 7090641*x^3 + 4501665*x^4)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)). - Stefano Spezia, Sep 01 2025

Extensions

Typo in a(14) corrected by Georg Fischer, Dec 08 2021

A343800 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 4) missing three edges, where exactly two removed edges are incident to the same vertex in the 6-point set and exactly two removed edges are incident to the same vertex in the other set.

Original entry on oeis.org

978064, 86336272, 6348047008, 430432446400, 28099268578864, 1801251897183472, 114448204851788608, 7240412761411376800, 457083355837815526864, 28825337854868779198672, 1816898392511988031818208, 114492570488330137017059200, 7213899161676798784740778864
Offset: 4

Views

Author

Rachel Wofford, Apr 29 2021

Keywords

Comments

Start with a complete bipartite graph K(6,n) with vertex sets A and B where |A| = 6 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where exactly two removed edges are incident to the same point in A and exactly two removed edges are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 6 X n matrices (with n at least 4) with three fixed zero entries where exactly two zero entries occur in one row and exactly two zero entries occur in one column, with no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 4) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing three edges, where exactly two removed edges are incident to the same vertex in A and exactly two removed edges are incident to the same vertex in B.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[465*63^# - 1110*31^# + 967*15^# - 388*7^# + 70*3^# - 4 &[# - 2] &, 12, 4] (* Michael De Vlieger, May 01 2021 *)

Formula

a(n) = 465*63^(n-2) - 1110*31^(n-2) + 967*15^(n-2) - 388*7^(n-2) + 70*3^(n-2) - 4.

A335609 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(4,n) (with n at least 2) complete bipartite graph missing one edge.

Original entry on oeis.org

26, 896, 18458, 316928, 5049626, 77860736, 1182865178, 17848076288, 268458094106, 4032033838976, 60516655913498, 908002911016448, 13621815273480986, 204339630665964416, 3065181271854043418, 45978326763617681408, 689679155263179402266, 10345217105634885213056
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 4 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
Number of edge covers of a K(4,n) complete bipartite graph (with n at least 2) missing one edge.

Examples

			For n = 3, a(2) = 26.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[7*15^(# - 1) - 16*7^(# - 1) + 4*3^# - 3 &, 18, 2] (* Michael De Vlieger, Jun 22 2020 *)
    LinearRecurrence[{26,-196,486,-315},{26,896,18458,316928},20] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    Vec(2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^20)) \\ Colin Barker, Jun 23 2020

Formula

a(n) = 7*15^(n-1) - 16*7^(n-1) + 4*3^n - 3.
From Colin Barker, Jun 23 2020: (Start)
G.f.: 2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>5.
(End)

A335610 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(5,n) (with n at least 2) complete bipartite graph missing one edge.

Original entry on oeis.org

80, 6800, 316928, 11784608, 397551920, 12828154160, 405380093408, 12683426301248, 394943123789840, 12269641330477520, 380755304897252288, 11809363300986469088, 366179512530595589360, 11352903763691009133680, 351960100658771425777568, 10911064386177197162304128
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 5 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
Number of edge covers of a K(5,n) complete bipartite graph (with n at least 2) missing one edge.

Examples

			For n = 2, a(2) = 80.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[15*31^(# - 1) - 43*15^(# - 1) + 46*7^(# - 1) - 22*3^(# - 1) + 4 &, 16, 2] (* Michael De Vlieger, Jun 22 2020 *)

Formula

a(n) = 15*31^(n-1) - 43*15^(n-1) + 46*7^(n-1) - 22*3^(n-1) + 4.
From Stefano Spezia, Jul 04 2020: (Start)
G.f.: 16*x^2*(5 + 140*x + 593*x^2 + 522*x^3)/(1 - 57*x + 1002*x^2 - 6562*x^3 + 15381*x^4 - 9765*x^5).
a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5) for n > 6. (End)

A335611 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 2) missing one edge.

Original entry on oeis.org

242, 49208, 5049626, 397551920, 27839280002, 1845793079528, 119216755050026, 7602793781214560, 481851209165874962, 30446042035976733848, 1920876815510991751226, 121101364739596962016400, 7632056827800217741372322, 480902390923479550619876168
Offset: 2

Views

Author

Steven Schlicker, Jul 16 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B of a complete bipartite graph K(6,n) (with n at least 2) missing one edge so that vertices that are connected by edges are the same Euclidean distance apart. This sequence gives the number of sets at each location on the line segment between A and B.
Number of {0,1} 6 X n (with n at least 2) matrices with one fixed zero entry and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 2). This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing one edge.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 31*63^(n-1)-106*31^(n-1)+145*15^(n-1) - 100*7^(n-1)+35*3^(n-1)-5 end proc: seq(a(n), n=2..20);
  • PARI
    Vec(2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)) + O(x^18)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = 31*63^(n-1) - 106*31^(n-1) + 145*15^(n-1) - 100*7^(n-1) + 35*3^(n-1) - 5.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)).
a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6) for n>7.
(End)

A335612 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the three point part.

Original entry on oeis.org

32, 344, 2792, 20720, 148592, 1050824, 7387832, 51811040, 362965952, 2541627704, 17793992072, 124565738960, 871983556112, 6103955042984, 42727895751512, 299095901612480, 2093673205343072, 14655718119568664, 102590043883482152
Offset: 3

Views

Author

Steven Schlicker, Jul 16 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B (with |A| = 3) of a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in A. Points in the sets A and B that correspond to vertices that are connected by edges are the same Euclidean distance apart. This sequence gives the number of sets at each location on the line segment between the sets A and B.
Number of {0,1} 3 X n matrices (with n at least 3) with two fixed zero entries in the same row and no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 3) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing two edges, where the two removed edges are incident to the same vertex in A.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 9*7^(n-2)-11*3^(n-2)+2 end proc: seq(a(n), n=3..21);
  • PARI
    Vec(8*x^3*(4 - x) / ((1 - x)*(1 - 3*x)*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = 9*7^(n-2) - 11*3^(n-2) + 2.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 8*x^3*(4 - x) / ((1 - x)*(1 - 3*x)*(1 - 7*x)).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n>5.
(End)

A337417 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the six point part.

Original entry on oeis.org

16322, 2145368, 183405386, 13292505200, 895227774482, 58252080636488, 3728244541647386, 236702709858383840, 14969004415531532642, 944809197018309879608, 59577646546802243102186, 3755087128633478474841680, 236623057112566045886497202, 14908882367276213189083986728
Offset: 3

Views

Author

Steven Schlicker, Aug 26 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B (with |A| = 6) of a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in A. Points in the sets A and B that correspond to vertices that are connected by edges are the same Euclidean distance apart. This sequence tells the number of sets at each location on the line segment between A and B.
Number of {0,1} 6 X n (with n at least 3) matrices with two fixed zero entries in the same row and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 3) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing two edges, where the two removed edges are incident to the same vertex in A.

References

  • S. Schlicker, R. Vasquez, R. Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs. In preparation.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 961*63^(n-2)-2086*31^(n-2)+1615*15^(n-2) - 580*7^(n-2)+95*3^(n-2) -5 end proc: seq(a(n), n=3..20);
  • PARI
    Vec(2*x^3*(8161 + 93364*x + 464086*x^2 + 43284*x^3 + 172305*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)) + O(x^15)) \\ Colin Barker, Nov 19 2020

Formula

a(n) = 961*63^(n-2) - 2086*31^(n-2) + 1615*15^(n-2) - 580*7^(n-2) + 95*3^(n-2) - 5.
From Colin Barker, Nov 19 2020: (Start)
G.f.: 2*x^3*(8161 + 93364*x + 464086*x^2 + 43284*x^3 + 172305*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)).
a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6) for n>8.
(End)

A340174 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 5-point set but are incident to the same vertex in the other set.

Original entry on oeis.org

2792, 140114, 5366288, 183405386, 5953824632, 188681559554, 5911452093728, 184194287464826, 5724142958302472, 177660449252559794, 5510655708296433968, 170878064308411409066, 5297936128237164553112, 164246762516365548788834, 5091810779768636860563008
Offset: 3

Views

Author

Steven Schlicker, Dec 30 2020

Keywords

Comments

Start with a complete bipartite graph K(5,n) with vertex sets A and B where |A| = 5 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A but are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 5 X n matrices (with n at least 3) with two fixed zero entries in the same column and no zero rows or columns.
Take a complete bipartite graph K(5,n) (with n at least 3) having parts A and B where |A| = 5. This sequence gives the number of edge covers of the graph obtained from this K(5,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A but are incident to the same vertex in B.

Crossrefs

Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Cf. A048291 (number of {0,1} n X n matrices with no zero rows or columns).

Programs

  • Mathematica
    Array[7*31^(# - 1) - 23*15^(# - 1) + 4*7^# - 5*3^(#) + 3 &, 15, 3] (* Michael De Vlieger, Jan 12 2021 *)
    LinearRecurrence[{57,-1002,6562,-15381,9765},{2792,140114,5366288,183405386,5953824632},20] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = 7*31^(n-1) - 23*15^(n-1) + 4*7^n - 5*3^(n) + 3.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: 2*x^3*(126945*x^4 - 199953*x^3 + 88687*x^2 - 9515*x + 1396)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)).
a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5). (End)

A340200 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 4-point set and are also not incident to the same vertex in the other set.

Original entry on oeis.org

379, 8281, 145387, 2338345, 36206299, 551097721, 8322744907, 125235896905, 1881303825979, 28238921924761, 423719401402027, 6356740091100265, 95357745044060059, 1430412681964995001, 21456515775287188747, 321850015455044492425, 4827766183620976460539
Offset: 3

Views

Author

Roman I. Vasquez, Dec 31 2020

Keywords

Comments

Start with a complete bipartite graph K(4,n) with vertex sets A and B where |A| = 4 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A and are also not incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 4 X n matrices (with n at least 3) with two fixed zero entries not in the same row or column and no zero rows or columns.
Take a complete bipartite graph K(4,n) (with n at least 3) having parts A and B where |A| = 4. This sequence gives the number of edge covers of the graph obtained from this K(4,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A and are also not incident to the same vertex in B.

Crossrefs

Other sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 49*15^(n-2) - 60*7^(n-2) + 22*3^(n-2) - 2.
From Stefano Spezia, Dec 31 2020: (Start)
G.f.: x^3*(379 - 1573*x + 4365*x^2 - 2835*x^3)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 6. (End)
Previous Showing 21-30 of 38 results. Next