cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A342532 Number of even-length compositions of n with alternating parts distinct.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 9, 14, 28, 44, 83, 136, 250, 424, 757, 1310, 2313, 4018, 7081, 12314, 21650, 37786, 66264, 115802, 202950, 354858, 621525, 1087252, 1903668, 3330882, 5831192, 10204250, 17862232, 31260222, 54716913, 95762576, 167614445, 293356422, 513456686
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2021

Keywords

Comments

These are finite even-length sequences q of positive integers summing to n such that q(i) != q(i+2) for all possible i.

Examples

			The a(2) = 1 through a(7) = 14 compositions:
  (1,1)  (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
         (2,1)  (2,2)  (2,3)  (2,4)      (2,5)
                (3,1)  (3,2)  (3,3)      (3,4)
                       (4,1)  (4,2)      (4,3)
                              (5,1)      (5,2)
                              (1,1,2,2)  (6,1)
                              (1,2,2,1)  (1,1,2,3)
                              (2,1,1,2)  (1,1,3,2)
                              (2,2,1,1)  (1,2,3,1)
                                         (1,3,2,1)
                                         (2,1,1,3)
                                         (2,3,1,1)
                                         (3,1,1,2)
                                         (3,2,1,1)
		

Crossrefs

The strictly decreasing version appears to be A064428 (odd-length: A001522).
The equal version is A065608 (A342527 with odds).
The weakly decreasing version is A114921 (A342528 with odds).
Including odds gives A224958.
A000726 counts partitions with alternating parts unequal.
A325545 counts compositions with distinct first differences.
A342529 counts compositions with distinct first quotients.

Programs

  • Mathematica
    qdq[q_]:=And@@Table[q[[i]]!=q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],qdq]],{n,0,15}]
  • PARI
    \\ here gf gives A106351 as g.f.
    gf(n, y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))}
    seq(n)={my(p=gf(n,y)); Vec(sum(k=0, n\2, polcoef(p,k,y)^2))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: 1 + Sum_{k>=1} B_k(x)^2 where B_k(x) is the g.f. of column k of A106351. - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(24) and beyond from Andrew Howroyd, Apr 16 2021

A342498 Number of integer partitions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 8, 9, 12, 12, 14, 16, 18, 20, 24, 26, 27, 30, 35, 37, 45, 47, 52, 56, 61, 65, 72, 77, 83, 90, 95, 99, 109, 117, 127, 135, 144, 151, 164, 172, 181, 197, 209, 222, 239, 249, 263, 280, 297, 310, 332, 349, 368, 391, 412, 433, 457, 480, 503
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also the number of reversed integer partitions of n with strictly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition y = (13,7,2,1) has first quotients (7/13,2/7,1/2) so is not counted under a(23). However, the first differences (-6,-5,-1) are strictly increasing, so y is counted under A240027(23).
The a(1) = 1 through a(9) = 9 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)    (8)    (9)
       (11)  (21)  (22)   (32)   (33)   (43)   (44)   (54)
                   (31)   (41)   (42)   (52)   (53)   (63)
                   (211)  (311)  (51)   (61)   (62)   (72)
                                 (411)  (322)  (71)   (81)
                                        (511)  (422)  (522)
                                               (521)  (621)
                                               (611)  (711)
                                                      (5211)
		

Crossrefs

The version for differences instead of quotients is A240027.
The ordered version is A342493.
The weakly increasing version is A342497.
The strictly decreasing version is A342499.
The strict case is A342517.
The Heinz numbers of these partitions are A342524.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with adjacent x < 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342499 Number of integer partitions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 11, 14, 15, 18, 20, 23, 26, 31, 34, 39, 42, 45, 51, 58, 65, 70, 78, 83, 91, 102, 111, 122, 133, 145, 158, 170, 182, 202, 217, 231, 248, 268, 285, 307, 332, 354, 374, 404, 436, 468, 502, 537, 576, 618, 654, 694, 737, 782, 830
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also the number of reversed partitions of n with strictly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (6,6,3,1) has first quotients (1,1/2,1/3) so is counted under a(16).
The a(1) = 1 through a(9) = 9 partitions:
  (1)  (2)   (3)   (4)   (5)    (6)    (7)    (8)    (9)
       (11)  (21)  (22)  (32)   (33)   (43)   (44)   (54)
                   (31)  (41)   (42)   (52)   (53)   (63)
                         (221)  (51)   (61)   (62)   (72)
                                (321)  (331)  (71)   (81)
                                              (332)  (432)
                                              (431)  (441)
                                                     (531)
                                                     (3321)
		

Crossrefs

The version for differences instead of quotients is A320470.
The ordered version is A342494.
The strictly increasing version is A342498.
The weakly decreasing version is A342513.
The strict case is A342518.
The Heinz numbers of these partitions are listed by A342525.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with adjacent x < 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342343 Number of strict compositions of n with alternating parts strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 13, 18, 27, 32, 44, 55, 73, 97, 121, 151, 194, 240, 299, 384, 465, 576, 706, 869, 1051, 1293, 1572, 1896, 2290, 2761, 3302, 3973, 4732, 5645, 6759, 7995, 9477, 11218, 13258, 15597, 18393, 21565, 25319, 29703, 34701, 40478, 47278, 54985
Offset: 0

Views

Author

Gus Wiseman, Apr 01 2021

Keywords

Comments

These are finite odd-length sequences q of distinct positive integers summing to n such that q(i) > q(i+2) for all possible i.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)    (2,6)
                          (3,2)  (4,2)    (3,4)    (3,5)
                          (4,1)  (5,1)    (4,3)    (5,3)
                                 (2,3,1)  (5,2)    (6,2)
                                 (3,1,2)  (6,1)    (7,1)
                                 (3,2,1)  (2,4,1)  (2,5,1)
                                          (4,1,2)  (3,4,1)
                                          (4,2,1)  (4,1,3)
                                                   (4,3,1)
                                                   (5,1,2)
                                                   (5,2,1)
		

Crossrefs

The non-strict case is A000041 (see A342528 for a bijective proof).
The non-strict odd-length case is A001522.
Strict compositions in general are counted by A032020
The non-strict even-length case is A064428.
The case of reversed partitions is A065033.
A000726 counts partitions with alternating parts unequal.
A003242 counts anti-run compositions.
A027193 counts odd-length compositions.
A034008 counts even-length compositions.
A064391 counts partitions by crank.
A064410 counts partitions of crank 0.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.
A325548 counts compositions with strictly decreasing differences.
A342194 counts strict compositions with equal differences.
A342527 counts compositions with alternating parts equal.

Programs

  • Mathematica
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],ici]],{n,0,15}]
  • PARI
    seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, binomial(k, k\2) * polcoef(p,k,y)))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} binomial(k,floor(k/2)) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021

A342494 Number of compositions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 15, 21, 30, 39, 50, 65, 82, 103, 129, 160, 196, 240, 293, 352, 422, 500, 593, 706, 832, 974, 1138, 1324, 1534, 1783, 2054, 2362, 2712, 3108, 3552, 4051, 4606, 5232, 5935, 6713, 7573, 8536, 9597, 10773, 12085, 13534, 15119, 16874, 18809
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (1,2,3,4,2) has first quotients (2,3/2,4/3,1/2) so is counted under a(12).
The a(1) = 1 through a(6) = 12 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,2,1)  (4,1)    (4,2)
                              (1,2,2)  (5,1)
                              (1,3,1)  (1,2,3)
                              (2,2,1)  (1,3,2)
                                       (1,4,1)
                                       (2,3,1)
                                       (3,2,1)
                                       (1,2,2,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325548.
The strictly increasing version is A342493.
The unordered version is A342499, ranked by A342525.
The strict unordered version is A342518.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, Mar 18 2021

A342497 Number of integer partitions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 25, 32, 36, 43, 49, 60, 65, 75, 83, 96, 106, 121, 131, 150, 163, 178, 194, 217, 230, 254, 275, 300, 320, 350, 374, 411, 439, 470, 503, 548, 578, 625, 666, 710, 758, 815, 855, 913, 970, 1029, 1085, 1157, 1212, 1288, 1360
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also called log-concave-up partitions.
Also the number of reversed integer partitions of n with weakly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition y = (6,3,2,1,1) has first quotients (1/2,2/3,1/2,1) so is not counted under a(13). However, the first differences (-3,-1,-1,0) are weakly increasing, so y is counted under A240026(13).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (311)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (411)     (421)      (422)
                                     (3111)    (511)      (521)
                                     (21111)   (4111)     (611)
                                     (111111)  (31111)    (2222)
                                               (211111)   (4211)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The version for differences instead of quotients is A240026.
The ordered version is A342492.
The strictly increasing version is A342498.
The weakly decreasing version is A342513.
The strict case is A342516.
The Heinz numbers of these partitions are A342523.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342513 Number of integer partitions of n with weakly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 15, 20, 21, 24, 28, 29, 33, 40, 44, 49, 57, 61, 65, 77, 84, 87, 99, 106, 115, 132, 141, 152, 167, 180, 193, 212, 228, 246, 274, 290, 309, 338, 357, 382, 412, 439, 463, 498, 536, 569, 608, 648, 693, 743, 790, 839, 903, 949
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also called log-concave-down partitions.
Also the number of reversed integer partitions of n with weakly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (9,7,4,2,1) has first quotients (7/9,4/7,1/2,1/2) so is counted under a(23).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (111111)  (2221)     (431)
                                               (1111111)  (2222)
                                                          (11111111)
		

Crossrefs

The ordered version is A069916.
The version for differences instead of quotients is A320466.
The weakly increasing version is A342497.
The strictly decreasing version is A342499.
The strict case is A342519.
The Heinz numbers of these partitions are A342526.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with adjacent parts x <= 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342194 Number of strict compositions of n with equal differences, or strict arithmetic progressions summing to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 7, 7, 13, 11, 11, 17, 13, 15, 25, 17, 17, 29, 19, 23, 35, 25, 23, 39, 29, 29, 45, 33, 29, 55, 31, 35, 55, 39, 43, 65, 37, 43, 65, 51, 41, 77, 43, 51, 85, 53, 47, 85, 53, 65, 87, 61, 53, 99, 67, 67, 97, 67, 59, 119, 61, 71, 113, 75, 79, 123, 67, 79, 117
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2021

Keywords

Examples

			The a(1) = 1 through a(9) = 13 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)  (1,8)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)  (2,6)  (2,7)
                          (3,2)  (4,2)    (3,4)  (3,5)  (3,6)
                          (4,1)  (5,1)    (4,3)  (5,3)  (4,5)
                                 (1,2,3)  (5,2)  (6,2)  (5,4)
                                 (3,2,1)  (6,1)  (7,1)  (6,3)
                                                        (7,2)
                                                        (8,1)
                                                        (1,3,5)
                                                        (2,3,4)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

Strict compositions in general are counted by A032020.
The unordered version is A049980.
The non-strict version is A175342.
A000203 adds up divisors.
A000726 counts partitions with alternating parts unequal.
A003242 counts anti-run compositions.
A224958 counts compositions with alternating parts unequal.
A342343 counts compositions with alternating parts strictly decreasing.
A342495 counts compositions with constant quotients.
A342527 counts compositions with alternating parts equal.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],SameQ@@Differences[#]&]],{n,0,30}]

Formula

a(n > 0) = A175342(n) - A000005(n) + 1.
a(n > 0) = 2*A049988(n) - 2*A000005(n) + 1 = 2*A049982(n) + 1.
Previous Showing 11-18 of 18 results.