A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k.
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 3, 1, 1, 7, 9, 6, 3, 1, 1, 11, 14, 12, 6, 3, 1, 1, 15, 23, 20, 12, 6, 3, 1, 1, 22, 34, 35, 21, 12, 6, 3, 1, 1, 30, 52, 56, 38, 21, 12, 6, 3, 1, 1, 42, 75, 91, 62, 38, 21, 12, 6, 3, 1, 1, 56, 109, 140, 103, 63, 38, 21, 12, 6, 3, 1, 1
Offset: 0
Examples
Triangle begins: 1 1 1 2 1 1 3 3 1 1 5 5 3 1 1 7 9 6 3 1 1 11 14 12 6 3 1 1 15 23 20 12 6 3 1 1 22 34 35 21 12 6 3 1 1 30 52 56 38 21 12 6 3 1 1 42 75 91 62 38 21 12 6 3 1 1 56 109 140 103 63 38 21 12 6 3 1 1 77 153 215 163 106 63 38 21 12 6 3 1 1 Row n = 5 counts the following partitions: (55) (442) (433) (622) (811) (10) (3322) (541) (532) (721) (4411) (22222) (631) (61111) (222211) (32221) (42211) (331111) (33211) (52111) (22111111) (43111) (4111111) (1111111111) (2221111) (3211111) (211111111)
Crossrefs
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],k==sats[#]&]],{n,0,15,2},{k,0,n,2}]
Comments