cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A277103 Number of partitions of n for which the number of odd parts is equal to the positive alternating sum of the parts.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 1, 3, 10, 10, 4, 10, 27, 27, 13, 28, 69, 69, 37, 72, 161, 162, 96, 171, 361, 364, 230, 388, 768, 777, 522, 836, 1581, 1605, 1128, 1739, 3145, 3203, 2345, 3495, 6094, 6225, 4712, 6831, 11511, 11794, 9198, 13010, 21293, 21875, 17496, 24239
Offset: 0

Views

Author

Emeric Deutsch, Oct 18 2016

Keywords

Comments

It follows by conjugation that the partition statistics "alternating sum" and "number of odd parts" are equidistributed. Consequently, the self-conjugate partitions satisfy the required condition.
In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, OP gives the number of odd terms of a finite sequence of positive integers.
For the specified value of n, the second Maple program lists the partitions of n counted by a(n).
Number of integer partitions of n with the same number of odd parts as their conjugate. - Gus Wiseman, Jun 27 2021

Examples

			a(3) = 1 because we have [2,1]. The partitions [3] and [1,1,1] do not qualify.
a(4) = 3 because we have [3,1], [2,2], and [2,1,1]. The partitions [4] and [1,1,1,1] do not qualify.
		

Crossrefs

Comparing even parts to odd conjugate parts gives A277579.
Comparing product of parts to product of conjugate parts gives A325039.
The reverse version is A345196.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = OP(P[k]) then c := c+1 else end if end do: c end proc: seq(a(n), n = 0 .. 50);
    n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = OP(P[k]) then C := `union`(C, {P[k]}) else  end if end do: C;
    # alternative Maple program:
    b:= proc(n, i, s, t) option remember; `if`(n=0,
          `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+
          `if`(i>n, 0, b(n-i, i, s+t*i-irem(i, 2), -t))))
        end:
    a:= n-> b(n$2, 0, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 19 2016
  • Mathematica
    b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[conj[#],?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 27 2021 *)

A119899 Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 33, 34, 35, 38, 39, 40, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 104, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140, 141, 142, 143, 145, 146, 150
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

Also numbers whose alternating sum of prime indices is < 0. Equivalently, numbers with even bigomega whose conjugate prime indices are not all even. This is the intersection of A028260 and A000037. - Gus Wiseman, Jun 20 2021

Examples

			From _Gus Wiseman_, Jun 20 2021: (Start)
The sequence of terms together with their prime indices begins:
       6: {1,2}          51: {2,7}          86: {1,14}
      10: {1,3}          54: {1,2,2,2}      87: {2,10}
      14: {1,4}          55: {3,5}          88: {1,1,1,5}
      15: {2,3}          56: {1,1,1,4}      90: {1,2,2,3}
      21: {2,4}          57: {2,8}          91: {4,6}
      22: {1,5}          58: {1,10}         93: {2,11}
      24: {1,1,1,2}      60: {1,1,2,3}      94: {1,15}
      26: {1,6}          62: {1,11}         95: {3,8}
      33: {2,5}          65: {3,6}          96: {1,1,1,1,1,2}
      34: {1,7}          69: {2,9}         104: {1,1,1,6}
      35: {3,4}          74: {1,12}        106: {1,16}
      38: {1,8}          77: {4,5}         111: {2,12}
      39: {2,6}          82: {1,13}        115: {3,9}
      40: {1,1,1,3}      84: {1,1,2,4}     118: {1,17}
      46: {1,9}          85: {3,7}         119: {4,7}
(End)
		

Crossrefs

Superset: A119847. Subset: A006881. The intersection of A028260 and A000037.
Positions of negative terms in A316524.
The partitions with these Heinz numbers are counted by A344608.
Complement of A344609.

Programs

  • Mathematica
    Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* Harvey P. Dale, Jan 24 2013 *)

A344609 Numbers whose alternating sum of prime indices is >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 102, 103, 105, 107
Offset: 1

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

Also Heinz numbers of partitions whose reverse-alternating sum is >= 0. These are partitions whose conjugate parts are all even or whose length is odd.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            20: {1,1,3}         45: {2,2,3}
      2: {1}           23: {9}             47: {15}
      3: {2}           25: {3,3}           48: {1,1,1,1,2}
      4: {1,1}         27: {2,2,2}         49: {4,4}
      5: {3}           28: {1,1,4}         50: {1,3,3}
      7: {4}           29: {10}            52: {1,1,6}
      8: {1,1,1}       30: {1,2,3}         53: {16}
      9: {2,2}         31: {11}            59: {17}
     11: {5}           32: {1,1,1,1,1}     61: {18}
     12: {1,1,2}       36: {1,1,2,2}       63: {2,2,4}
     13: {6}           37: {12}            64: {1,1,1,1,1,1}
     16: {1,1,1,1}     41: {13}            66: {1,2,5}
     17: {7}           42: {1,2,4}         67: {19}
     18: {1,2,2}       43: {14}            68: {1,1,7}
     19: {8}           44: {1,1,5}         70: {1,3,4}
For example, the prime indices of 70 are {1,3,4} with alternating sum 1 - 3 + 4 = 2, so 70 is in the sequence. On the other hand, the prime indices of 24 are {1,1,1,2} with alternating sum 1 - 1 + 1 - 2 = -1, so 24 is not in the sequence.
		

Crossrefs

The opposite (nonpositive) version is A028260, counted by A027187.
The strict case (n > 0) is counted by A067659, odd bisection A344650.
Permutations of prime indices of these terms are counted by A116406.
Complement of A119899, Heinz numbers of the partitions counted by A344608.
Positions of nonnegative terms in A316524 or A344617.
Heinz numbers of the partitions counted by A344607.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],ats[primeMS[#]]>=0&]

A345911 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 1.

Original entry on oeis.org

1, 6, 7, 20, 21, 26, 27, 30, 31, 72, 73, 82, 83, 86, 87, 92, 93, 100, 101, 106, 107, 110, 111, 116, 117, 122, 123, 126, 127, 272, 273, 290, 291, 294, 295, 300, 301, 312, 313, 324, 325, 330, 331, 334, 335, 340, 341, 346, 347, 350, 351, 360, 361, 370, 371, 374
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     1: (1)
     6: (1,2)
     7: (1,1,1)
    20: (2,3)
    21: (2,2,1)
    26: (1,2,2)
    27: (1,2,1,1)
    30: (1,1,1,2)
    31: (1,1,1,1,1)
    72: (3,4)
    73: (3,3,1)
    82: (2,3,2)
    83: (2,3,1,1)
    86: (2,2,1,2)
    87: (2,2,1,1,1)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for Heinz numbers of partitions is A001105.
A version using runs of binary digits is A066879.
These are positions of 1's in A344618.
The non-reverse version is A345909.
The opposite (negative 1) version is A345912.
The version for prime indices is A345958.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==1&]

A345913 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           17: (4,1)          37: (3,2,1)
     1: (1)          18: (3,2)          38: (3,1,2)
     2: (2)          19: (3,1,1)        39: (3,1,1,1)
     3: (1,1)        21: (2,2,1)        41: (2,3,1)
     4: (3)          22: (2,1,2)        42: (2,2,2)
     5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
     7: (1,1,1)      26: (1,2,2)        44: (2,1,3)
     8: (4)          28: (1,1,3)        45: (2,1,2,1)
     9: (3,1)        29: (1,1,2,1)      46: (2,1,1,2)
    10: (2,2)        31: (1,1,1,1,1)    47: (2,1,1,1,1)
    11: (2,1,1)      32: (6)            50: (1,3,2)
    13: (1,2,1)      33: (5,1)          52: (1,2,3)
    14: (1,1,2)      34: (4,2)          53: (1,2,2,1)
    15: (1,1,1,1)    35: (4,1,1)        55: (1,2,1,1,1)
    16: (5)          36: (3,3)          56: (1,1,4)
		

Crossrefs

These compositions are counted by A116406.
These are the positions of terms >= 0 in A124754.
The version for prime indices is A344609.
The reverse-alternating sum version is A345914.
The opposite (k <= 0) version is A345915.
The strict (k > 0) version is A345917.
The complement is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>=0&]

A347439 Number of factorizations of n with integer reciprocal alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 6, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

All of these factorizations have an even number of factors, so their reverse-alternating product is also an integer.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
The value of a(n) does not depend solely on the prime signature of n. See the example comparing a(144) and a(400). - Antti Karttunen, Jul 28 2024

Examples

			The a(n) factorizations for
n    = 16,       36,       64,           72,       128,          144:
a(n) = 3,        4,        6,            5,        7,            11
--------------------------------------------------------------------------------
       2*8       6*6       8*8           2*36      2*64          2*72
       4*4       2*18      2*32          3*24      4*32          3*48
       2*2*2*2   3*12      4*16          6*12      8*16          4*36
                 2*2*3*3   2*2*2*8       2*2*3*6   2*2*4*8       6*24
                           2*2*4*4       2*3*3*4   2*4*4*4       12*12
                           2*2*2*2*2*2             2*2*2*16      2*2*6*6
                                                   2*2*2*2*2*4   2*3*3*8
                                                                 3*3*4*4
                                                                 2*2*2*18
                                                                 2*2*3*12
                                                                 2*2*2*2*3*3
From _Antti Karttunen_, Jul 28 2024 (Start)
For n=400, there are 12 such factorizations:
  2*200
  4*100
  5*80
  10*40
  20*20
  2*2*2*50
  2*2*5*20
  2*2*10*10
  2*4*5*10
  2*5*5*8
  4*4*5*5
  2*2*2*2*5*5.
Note that 400 = 2^4 * 5^2 has the same prime signature as 144 = 2^4 * 3^2. 400 = 2*4*5*10 is the factorization for which there is no analogous factorization of 144, as 2*3*4*6 doesn't satisfy the condition of having an integer reciprocal alternating product.
(End)
		

Crossrefs

Positions of 0's are A005117 \ {1}.
Positions of non-0's are 1 and A013929.
The restriction to powers of 2 is A027187, reverse A035363.
Positions of 1's are 1 and A082293.
The additive version is A119620, ranked by A347451 and A028982.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reciprocal version is A347437.
The reverse version is A347438.
Allowing any alternating product < 1 gives A347440.
The non-reciprocal reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347459, non-reciprocal A347458.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
    
  • PARI
    A347439(n, m=0, ap=1, e=1) = if(1==n, 1==denominator(ap), sumdiv(n, d, if(d>1 && d>=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A027187(n).
a(n^2) = A347459(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Jul 28 2024

A347442 Number of factorizations of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 8, 2, 3, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 8, 5, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 9, 1, 3, 3, 8, 1, 1, 1, 3, 1, 1, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(n) factorizations for n = 4, 8, 16, 32, 36, 54, 64:
  (4)    (8)      (16)       (32)         (36)       (54)     (64)
  (2*2)  (2*4)    (2*8)      (4*8)        (6*6)      (3*18)   (8*8)
         (2*2*2)  (4*4)      (2*16)       (2*18)     (2*3*9)  (2*32)
                  (2*2*4)    (2*2*8)      (3*12)     (3*3*6)  (4*16)
                  (2*2*2*2)  (2*4*4)      (2*2*9)             (2*4*8)
                             (2*2*2*4)    (2*3*6)             (4*4*4)
                             (2*2*2*2*2)  (3*3*4)             (2*2*16)
                                          (2*2*3*3)           (2*2*2*8)
                                                              (2*2*4*4)
                                                              (2*2*2*2*4)
                                                              (2*2*2*2*2*2)
		

Crossrefs

The restriction to powers of 2 is A000041, reverse A344607.
Positions of 2's are A001248.
Positions of 1's are A005117.
Positions of non-1's are A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reverse version is A347437.
The reciprocal version is A347438.
The even-length case is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441, ranked by A347453.
The additive version is A347445, ranked by A347457.
The non-reverse additive version is A347446, ranked by A347454.
Allowing any alternating product >= 1 gives A347456.
The ordered version is A347463.
A038548 counts possible reverse-alternating products of factorizations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ@*revaltprod]],{n,100}]
  • PARI
    A347442(n, m=n, ap=1, e=0) = if(1==n, 1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347442(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A000041(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A345922 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 2.

Original entry on oeis.org

2, 11, 12, 14, 37, 40, 42, 47, 51, 52, 54, 59, 60, 62, 137, 144, 146, 151, 157, 163, 164, 166, 171, 172, 174, 181, 184, 186, 191, 197, 200, 202, 207, 211, 212, 214, 219, 220, 222, 229, 232, 234, 239, 243, 244, 246, 251, 252, 254, 529, 544, 546, 551, 557, 569
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      2: (2)            144: (3,5)
     11: (2,1,1)        146: (3,3,2)
     12: (1,3)          151: (3,2,1,1,1)
     14: (1,1,2)        157: (3,1,1,2,1)
     37: (3,2,1)        163: (2,4,1,1)
     40: (2,4)          164: (2,3,3)
     42: (2,2,2)        166: (2,3,1,2)
     47: (2,1,1,1,1)    171: (2,2,2,1,1)
     51: (1,3,1,1)      172: (2,2,1,3)
     52: (1,2,3)        174: (2,2,1,1,2)
     54: (1,2,1,2)      181: (2,1,2,2,1)
     59: (1,1,2,1,1)    184: (2,1,1,4)
     60: (1,1,1,3)      186: (2,1,1,2,2)
     62: (1,1,1,1,2)    191: (2,1,1,1,1,1,1)
    137: (4,3,1)        197: (1,4,2,1)
		

Crossrefs

These compositions are counted by A088218.
The case of partitions is counted by A120452.
These are the positions of 2's in A344618.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==2&]

A345923 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -2.

Original entry on oeis.org

9, 34, 39, 45, 49, 57, 132, 139, 142, 149, 154, 159, 161, 169, 178, 183, 189, 194, 199, 205, 209, 217, 226, 231, 237, 241, 249, 520, 531, 534, 540, 549, 554, 559, 564, 571, 574, 577, 585, 594, 599, 605, 612, 619, 622, 629, 634, 639, 642, 647, 653, 657, 665
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      9: (3,1)            183: (2,1,2,1,1,1)
     34: (4,2)            189: (2,1,1,1,2,1)
     39: (3,1,1,1)        194: (1,5,2)
     45: (2,1,2,1)        199: (1,4,1,1,1)
     49: (1,4,1)          205: (1,3,1,2,1)
     57: (1,1,3,1)        209: (1,2,4,1)
    132: (5,3)            217: (1,2,1,3,1)
    139: (4,2,1,1)        226: (1,1,4,2)
    142: (4,1,1,2)        231: (1,1,3,1,1,1)
    149: (3,2,2,1)        237: (1,1,2,1,2,1)
    154: (3,1,2,2)        241: (1,1,1,4,1)
    159: (3,1,1,1,1,1)    249: (1,1,1,1,3,1)
    161: (2,5,1)          520: (6,4)
    169: (2,2,3,1)        531: (5,3,1,1)
    178: (2,1,3,2)        534: (5,2,1,2)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A344618.
The case of partitions of 2n is A344741.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-2&]

A345925 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 2.

Original entry on oeis.org

2, 9, 11, 14, 34, 37, 39, 42, 45, 47, 52, 57, 59, 62, 132, 137, 139, 142, 146, 149, 151, 154, 157, 159, 164, 169, 171, 174, 178, 181, 183, 186, 189, 191, 200, 209, 211, 214, 220, 226, 229, 231, 234, 237, 239, 244, 249, 251, 254, 520, 529, 531, 534, 540, 546
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and corresponding compositions:
      2: (2)            137: (4,3,1)
      9: (3,1)          139: (4,2,1,1)
     11: (2,1,1)        142: (4,1,1,2)
     14: (1,1,2)        146: (3,3,2)
     34: (4,2)          149: (3,2,2,1)
     37: (3,2,1)        151: (3,2,1,1,1)
     39: (3,1,1,1)      154: (3,1,2,2)
     42: (2,2,2)        157: (3,1,1,2,1)
     45: (2,1,2,1)      159: (3,1,1,1,1,1)
     47: (2,1,1,1,1)    164: (2,3,3)
     52: (1,2,3)        169: (2,2,3,1)
     57: (1,1,3,1)      171: (2,2,2,1,1)
     59: (1,1,2,1,1)    174: (2,2,1,1,2)
     62: (1,1,1,1,2)    178: (2,1,3,2)
    132: (5,3)          181: (2,1,2,2,1)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A124754.
The case of partitions of 2n is A344741.
The version for reverse-alternating sum is A345922.
The opposite (negative 2) version is A345924.
The version for Heinz numbers of partitions is A345960 (reverse: A345961).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==2&]
Previous Showing 21-30 of 67 results. Next