A187251
Number of permutations of [n] having no cycle with 3 or more alternating runs (it is assumed that the smallest element of a cycle is in the first position).
Original entry on oeis.org
1, 1, 2, 6, 22, 94, 460, 2532, 15420, 102620, 739512, 5729192, 47429896, 417429800, 3888426512, 38192416048, 394239339792, 4264424937488, 48212317486112, 568395755184224, 6973300915138656, 88860103591344864, 1174131206436335296, 16061756166912244800
Offset: 0
a(4)=22 because only the permutations 3421=(1324) and 4312=(1423) have cycles with more than 2 alternating runs.
-
g := exp((2*z-1+exp(2*z))*1/4): gser := series(g, z = 0, 28): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 23);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*ceil(2^(j-2)), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, May 30 2021
-
nmax = 20; CoefficientList[Series[E^((2*x-1+E^(2*x))/4), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 17 2020 *)
-
a(n):=n!*sum(2^(n-2*k)*sum(binomial(k,j)*stirling2(n-k+j,j)*j!/(n-k+j)!,j,0,k)/k!,k,1,n); /* Vladimir Kruchinin, Apr 25 2011 */
-
x='x+O('x^66); Vec(serlaplace(exp( (2*x-1+exp(2*x))/4 ))) /* Joerg Arndt, Apr 26 2011 */
-
lista(m) = {P = x*y; for (n=1, m, M = subst(P, x, 1); M = subst(M, y, 1); print1(polcoeff(M, 0, q), ", "); P = (n*q+x*y)*P + 2*q*(1-q)*deriv(P, q)+ 2*x*(1-q)*deriv(P, x)+ (1-2*y+q*y)*deriv(P, y); ); } \\ (adapted from PARI prog in A216964) \\ Michel Marcus, May 17 2013
A345341
Total number of cycles in all permutations of [n] having cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
0, 1, 3, 11, 48, 238, 1318, 8054, 53728, 387836, 3007940, 24917668, 219375104, 2043792680, 20074003368, 207186660712, 2240632127232, 25324980662544, 298471543286448, 3660469596095280, 46627358889945344, 615855211031451104, 8421273619742748256
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
p[1]])(b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..23);
-
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[Function[p, p + {0,
p[[1]]}][b[n-j] Binomial[n-1, j-1] Ceiling[2^(j-2)]], {j, 1, n}]];
a[n_] := b[n][[2]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
A345342
Number of permutations of [2n] having n cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 1, 11, 195, 5033, 171465, 7264499, 368258891, 21740278417, 1465044247953, 110975742044635, 9334724676616339, 863320991981279033, 87072657503374176985, 9511213780859395685955, 1118615909510940858978075, 140933163945864346869845025, 18937018020284359019138011425
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
a:= n-> coeff(b(2*n), x, n):
seq(a(n), n=0..18);
-
b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x b[n-j] Binomial[n-1, j-1]* Ceiling[2^(j-2)]], {j, n}]];
a[n_] := Coefficient[b[2n], x, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
a[0] := 1; a[n_] := Sum[Binomial[2*n, n + k + 1]*StirlingS2[n + k + 1, k + 1], {k, 0, n}]; Flatten[Table[a[n] , {n, 0, 17}]] (* Detlef Meya, Jan 18 2024 *)
A346317
Number of permutations of [n] having two cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 3, 11, 40, 148, 560, 2160, 8448, 33344, 132352, 527104, 2103296, 8401920, 33583104, 134279168, 537001984, 2147762176, 8590524416, 34360983552, 137441574912, 549761318912, 2199034789888, 8796117139456, 35184422420480, 140737593212928, 562950171525120
Offset: 2
A346318
Number of permutations of [n] having three cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 6, 35, 195, 1078, 5992, 33632, 190800, 1093664, 6327552, 36904192, 216676096, 1279012352, 7581628416, 45086720000, 268774576128, 1605129183232, 9598558142464, 57453899350016, 344139257020416, 2062361588793344, 12363724057214976, 74138363625472000
Offset: 3
-
Drop[CoefficientList[Series[(96x^6-256x^5+298x^4-201x^3+75x^2-14x+1)x^3/((6x-1)(4x-1)^2 (2x-1)^3),{x,0,30}],x],3] (* Harvey P. Dale, Jun 11 2024 *)
A346319
Number of permutations of [n] having four cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 10, 85, 665, 5033, 37632, 280760, 2100560, 15799344, 119598336, 911432704, 6991479040, 53960703232, 418803056640, 3266623490048, 25590201536512, 201220024528896, 1587256170708992, 12553933544030208, 99511621823561728, 790240133265817600, 6284788112052715520
Offset: 4
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (40,-700,7056,-45360,194304,-561728,1082624,-1332224,946176,-294912).
A346320
Number of permutations of [n] having five cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 15, 175, 1820, 17913, 171465, 1619090, 15203100, 142623624, 1340443104, 12641487040, 119734858880, 1139445627392, 10895927375616, 104687442226688, 1010398777492480, 9793403768723456, 95295673342836736, 930591031216799744, 9116681462478864384
Offset: 5
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (70, -2240, 43456, -571424, 5393344, -37736448, 199267328, -800498944, 2446126592, -5639102464, 9631809536, -11801133056, 9794617344, -4926210048, 1132462080).
A346321
Number of permutations of [n] having six cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 21, 322, 4284, 52941, 627627, 7264499, 82948008, 940359420, 10628025408, 120071145376, 1358324810752, 15403850755456, 175232115148032, 2000450203866368, 22922052379355136, 263639657993643008, 3043516686354636800, 35260990780587196416, 409914386080322027520
Offset: 6
- Alois P. Heinz, Table of n, a(n) for n = 6..932
- Index entries for linear recurrences with constant coefficients, signature (112, -5880, 192416, -4402160, 74858880, -981976576, 10178341888, -84702207744, 571843371008, -3151736133632, 14222131077120, -52534235435008, 158334587600896, -386804516978688, 757761436024832, -1171275127980032, 1394246317768704, -1231344289972224, 758836566687744, -290924978503680, 52183852646400).
-
b:= proc(n) option remember; series(`if`(n=0, 1, add(b(n-j)
*binomial(n-1, j-1)*x*ceil(2^(j-2)), j=1..n)), x, 7)
end:
a:= n-> coeff(b(n), x, 6):
seq(a(n), n=6..29);
A346322
Number of permutations of [n] having seven cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 28, 546, 9030, 136521, 1956570, 27124955, 368258891, 4934711782, 65608599056, 868543125632, 11476719098208, 151628071536832, 2005351952310016, 26570735233245952, 352902891363604736, 4699994984738296320, 62779734338836996096, 841132871051793858560
Offset: 7
- Alois P. Heinz, Table of n, a(n) for n = 7..879
- Index entries for linear recurrences with constant coefficients, signature (168, -13440, 681632, -24615360, 673960320, -14545867776, 254017792512, -3655881782784, 43944394303488, -445483185094656, 3835837793820672, -28195256256282624, 177510573498728448, -958975703677403136, 4447744859322580992, -17695513525640822784, 60260448721418846208, -175010175041662877696, 431158568263920648192, -894423403170908602368, 1546792199062741319680, -2199976821097607725056, 2525948081813952921600, -2280501363206944456704, 1556924686713055346688, -754785240817587978240, 231325591660815974400, -33664847019245568000).
-
b:= proc(n) option remember; series(`if`(n=0, 1, add(b(n-j)
*binomial(n-1, j-1)*x*ceil(2^(j-2)), j=1..n)), x, 8)
end:
a:= n-> coeff(b(n), x, 7):
seq(a(n), n=7..29);
A346323
Number of permutations of [n] having eight cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
Original entry on oeis.org
1, 36, 870, 17490, 317031, 5390814, 87942569, 1395590625, 21740278417, 334497665216, 5105159585136, 77525496199008, 1173978347855008, 17756444087253504, 268561449630791680, 4065329910324860672, 61628507048573158144, 936035967482288414720
Offset: 8
- Alois P. Heinz, Table of n, a(n) for n = 8..838
- Index entries for linear recurrences with constant coefficients, signature (240, -27720, 2052512, -109501392, 4485157248, -146762730752, 3941544701952, -88583039660544, 1690201339101184, -27683252247785472, 392554888743665664, -4851695318748831744, 52537637204482129920, -500491057082699612160, 4207381516172517703680, -31281978226696900116480, 206014309171875372072960, -1202762064346113966080000, 6226143028325392507207680, -28563943556332339917225984, 116011182450800820653916160, -416382609918980503445176320, 1317358503859988420213342208, -3661679575789298214196215808, 8903229523611559893896527872, -18833310289690908029676945408, 34420123100871095086594654208, -53876192282750532975146827776, 71417640290027267167749144576, -79011046920360642901671149568, 71540341196238752070915588096, -51594033438349863071458000896, 28478927494742679928795299840, -11290083667294698757265817600, 2859932711332506431913984000, -347485857744891213250560000).
-
b:= proc(n) option remember; series(`if`(n=0, 1, add(b(n-j)
*binomial(n-1, j-1)*x*ceil(2^(j-2)), j=1..n)), x, 9)
end:
a:= n-> coeff(b(n), x, 8):
seq(a(n), n=8..29);
Showing 1-10 of 12 results.
Comments