A345172 Numbers whose multiset of prime factors has an alternating permutation.
1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 20: {1,1,3} 39: {2,6} 2: {1} 21: {2,4} 41: {13} 3: {2} 22: {1,5} 42: {1,2,4} 5: {3} 23: {9} 43: {14} 6: {1,2} 26: {1,6} 44: {1,1,5} 7: {4} 28: {1,1,4} 45: {2,2,3} 10: {1,3} 29: {10} 46: {1,9} 11: {5} 30: {1,2,3} 47: {15} 12: {1,1,2} 31: {11} 50: {1,3,3} 13: {6} 33: {2,5} 51: {2,7} 14: {1,4} 34: {1,7} 52: {1,1,6} 15: {2,3} 35: {3,4} 53: {16} 17: {7} 36: {1,1,2,2} 55: {3,5} 18: {1,2,2} 37: {12} 57: {2,8} 19: {8} 38: {1,8} 58: {1,10}
Crossrefs
Positions of nonzero terms in A345164.
The partitions with these Heinz numbers are counted by A345170.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A344604 counts alternating compositions with twins.
A344606 counts alternating permutations of prime indices with twins.
A345192 counts non-alternating compositions.
Programs
-
Mathematica
wigQ[y_]:=Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1; Select[Range[100],Select[Permutations[ Flatten[ConstantArray@@@FactorInteger[#]]],wigQ[#]&]!={}&]
Comments