cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A350139 Number of non-weakly alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 12, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 20, 0, 0, 0, 0, 0, 2, 0, 10, 0, 0, 0, 12, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

The first odd term is a(180) = 69, which has, for example, the non-weakly alternating ordered factorization 2*3*5*3*2.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n. Ordered factorizations are counted by A074206.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 24, 36, 48, 60:
  (2*3*4)  (2*3*6)    (2*3*8)    (2*5*6)
  (4*3*2)  (6*3*2)    (2*4*6)    (3*4*5)
           (2*3*3*2)  (6*4*2)    (5*4*3)
           (3*2*2*3)  (8*3*2)    (6*5*2)
                      (2*2*3*4)  (10*3*2)
                      (2*3*4*2)  (2*3*10)
                      (2*4*3*2)  (2*2*3*5)
                      (3*2*2*4)  (2*3*5*2)
                      (4*2*2*3)  (2*5*3*2)
                      (4*3*2*2)  (3*2*2*5)
                                 (5*2*2*3)
                                 (5*3*2*2)
		

Crossrefs

Positions of nonzero terms are A122181.
The strong version for compositions is A345192, ranked by A345168.
The strong case is A348613, complement A348610.
The version for compositions is A349053, complement A349052.
As compositions with ones allowed these are ranked by A349057.
The complement is counted by A349059.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts weakly alternating compositions, ranked by A345167.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating perms of prime factors, with twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 counts factorizations w/ alternating perm, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n],!whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349053(n).

A347704 Number of even-length integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 6, 4, 11, 8, 18, 13, 33, 22, 49, 38, 79, 58, 122, 90, 186, 139, 268, 206, 402, 304, 569, 448, 817, 636, 1152, 907, 1612, 1283, 2220, 1791, 3071, 2468, 4162, 3409, 5655, 4634, 7597, 6283, 10171, 8478, 13491, 11336, 17906, 15088, 23513, 20012
Offset: 0

Views

Author

Gus Wiseman, Sep 17 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(9) = 8 partitions:
  (11)  (21)  (22)    (41)    (33)      (61)      (44)        (63)
              (31)    (2111)  (42)      (2221)    (62)        (81)
              (1111)          (51)      (4111)    (71)        (3321)
                              (2211)    (211111)  (2222)      (4221)
                              (3111)              (3221)      (6111)
                              (111111)            (3311)      (222111)
                                                  (4211)      (411111)
                                                  (5111)      (21111111)
                                                  (221111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

Allowing any alternating product >= 1 gives A000041, reverse A344607.
Allowing any alternating product gives A027187, odd bisection A236914.
The Heinz numbers of these partitions are given by A028260 /\ A347457.
The reverse and reciprocal versions are both A035363.
The multiplicative version (factorizations) is A347438, reverse A347439.
The odd-length instead of even-length version is A347444.
Allowing any length gives A347446.
A034008 counts even-length compositions, ranked by A053754.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A347048 Number of even-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 6, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 11, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 1, 1, 0, 0, 0, 6, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 8, 0, 1, 1, 7, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 16, 32, 36, 48, 64, 96:
  4*4       8*4       6*6       12*4      8*8           24*4
  8*2       16*2      12*3      24*2      16*4          48*2
  2*2*2*2   2*2*4*2   18*2      2*2*6*2   32*2          3*2*8*2
            4*2*2*2   2*2*3*3   3*2*4*2   2*2*4*4       4*2*6*2
                      2*3*3*2   4*2*3*2   2*2*8*2       6*2*4*2
                      3*2*2*3   6*2*2*2   2*4*4*2       8*2*3*2
                      3*3*2*2             4*2*2*4       12*2*2*2
                                          4*2*4*2       2*2*12*2
                                          4*4*2*2
                                          8*2*2*2
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 0's are A005117 \ {2}.
The restriction to powers of 2 is A027306.
Heinz numbers of partitions of this type are A028260 /\ A347457.
Positions of 3's appear to be A030514.
Positions of 1's are 1 and A082293.
Allowing non-integer alternating product gives A174725, unordered A339846.
The odd-length version is A347049.
The unordered version is A347438, reverse A347439.
Allowing any length gives A347463.
Partitions of this type are counted by A347704, reverse A035363.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339890 counts odd-length factorizations, ordered A174726.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347446 = partitions with integer alternating product, reverse A347445.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347048(n, m=n, ap=1, e=0) = if(1==n,!(e%2) && 1==numerator(ap), sumdiv(n, d, if(d>1, A347048(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347049(n).

Extensions

Data section extended up to a(105) by Antti Karttunen, Jul 28 2024

A347049 Number of odd-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 14, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 3, 15, 1, 1, 1, 3, 1, 1, 1, 24, 1, 1, 3, 3, 1, 1, 1, 14, 4, 1, 1, 7, 1, 1, 1, 5, 1, 7, 1, 3, 1, 1, 1, 24, 1, 3, 3, 11
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 2, 8, 12, 16, 24, 32, 36, 48:
  2   8       12      16      24      32          36      48
      2*2*2   2*2*3   2*2*4   2*2*6   2*2*8       2*2*9   2*4*6
              3*2*2   2*4*2   3*2*4   2*4*4       2*3*6   3*2*8
                      4*2*2   4*2*3   4*2*4       2*6*3   3*4*4
                              6*2*2   4*4*2       3*2*6   4*2*6
                                      8*2*2       3*3*4   4*4*3
                                      2*2*2*2*2   3*6*2   6*2*4
                                                  4*3*3   6*4*2
                                                  6*2*3   8*2*3
                                                  6*3*2   12*2*2
                                                  9*2*2   2*2*12
                                                          2*2*2*2*3
                                                          2*2*3*2*2
                                                          3*2*2*2*2
		

Crossrefs

Positions of 2's appear to be A030078.
Positions of 3's appear to be A054753.
Positions of 1's appear to be A167207.
Allowing non-integer alternating product gives A174726, unordered A339890.
The even-length version is A347048.
The unordered version is A347441, with same reverse version.
The case of partitions is A347444, ranked by A347453.
Allowing any length gives A347463.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A174725.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347438 = factorizations with alternating product 1, on squares A273013.
A347439 = factorizations with integer reciprocal alternating product.
A347446 = partitions with integer alternating product, reverse A347445.
A347457 lists Heinz numbers of partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347708 counts possible alternating products of odd-length factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347049(n, m=n, ap=1, e=0) = if(1==n,(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1, A347049(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347048(n).

Extensions

Data section extended up to a(100) by Antti Karttunen, Jul 28 2024

A347709 Number of distinct rational numbers of the form x * z / y for some factorization x * y * z = n, 1 < x <= y <= z.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 1, 1, 0, 1, 0, 3, 1, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 1, 1, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2021

Keywords

Comments

This is also the number of distinct possible alternating products of length-3 factorizations of n, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)), and where a factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			Representative factorizations for each of the a(360) = 9 alternating products:
   (2,2,90) -> 90
   (2,3,60) -> 40
   (2,4,45) -> 45/2
   (2,5,36) -> 72/5
   (2,6,30) -> 10
   (2,9,20) -> 40/9
  (2,10,18) -> 18/5
  (2,12,15) -> 5/2
   (3,8,15) -> 45/8
		

Crossrefs

Allowing factorizations of any length <= 3 gives A033273.
Positions of positive terms are A033942.
Positions of 0's are A037143.
The length-2 version is A072670.
Allowing any length gives A347460, reverse A038548.
Allowing any odd length gives A347708.
A001055 counts factorizations (strict A045778, ordered A074206).
A122179 counts length-3 factorizations.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions, positive A276024.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],Length[#]==3&]]],{n,100}]
  • PARI
    A347709(n) = { my(rats=List([])); fordiv(n,z,my(yx=n/z); fordiv(yx, y, my(x = yx/y); if((y <= z) && (x <= y) && (x > 1), listput(rats,x*z/y)))); #Set(rats); }; \\ Antti Karttunen, Jan 29 2025

Extensions

More terms from Antti Karttunen, Jan 29 2025

A363265 Number of integer factorizations of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

An integer factorization of n is a multiset of positive integers > 1 with product n.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Conjecture: 9 is missing from this sequence.

Examples

			The a(n) factorizations for n = 2, 4, 16, 24, 48, 72:
  (2)  (4)    (16)       (24)       (48)         (72)
       (2*2)  (4*4)      (2*2*6)    (3*4*4)      (2*6*6)
              (2*2*4)    (2*2*2*3)  (2*2*12)     (3*3*8)
              (2*2*2*2)             (2*2*2*6)    (2*2*18)
                                    (2*2*3*4)    (2*2*2*9)
                                    (2*2*2*2*3)  (2*2*3*6)
                                                 (2*3*3*4)
                                                 (2*2*2*3*3)
		

Crossrefs

The complement for partitions is A362607, ranks A362605.
The version for partitions is A362608, ranks A356862.
A001055 counts factorizations, strict A045778, ordered A074206.
A089723 counts constant factorizations.
A316439 counts factorizations by length, A008284 partitions.
A339846 counts even-length factorizations, A339890 odd-length.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],Length[modes[#]]==1&]],{n,100}]
Previous Showing 31-36 of 36 results.