cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A000318 Generalized tangent numbers d(4,n).

Original entry on oeis.org

4, 128, 16384, 4456448, 2080374784, 1483911200768, 1501108249821184, 2044143848640217088, 3605459138582973251584, 7995891855149741436305408, 21776918737280678860353961984, 71454103701490016776039304265728, 278008871543597996197497752082448384
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(4*x)*sin(4*x): ser := series(egf, x, 26):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
  • Mathematica
    nn = 30; t = Rest@Union[Range[0, nn - 1]! CoefficientList[Series[Tan[x], {x, 0, nn}], x]]; t2 = t*2^Range[2, 2*nn, 4] (* T. D. Noe, Jun 19 2012 *)

Formula

a(n) = 2^(4n-2) * A000182(n).
The g.f. has the following continued fraction expansion: g.f. = [4, b(0), c(0), b(1), c(1), b(2), c(2), ...] where b(n) = (Sum_{k=0..n} 1/(2*k+1))^2 / (128*(n+1)*x), c(n) = -4/((2*n+3)*(Sum_{k=0..n} 1/(2*k+1))*(Sum_{k=0..n+1} 1/(2*k+1))) and each convergent of this continued fraction is a Padé approximant of the Maclaurin series Sum_{k>=1} a(n)*x^(n-1). - Thomas Baruchel, Oct 19 2005
a(n) = (2*n-1)!*[x^(2*n-1)](sec(4*x)*sin(4*x)). - Peter Luschny, Nov 21 2021

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000

A000490 Generalized Euler numbers c(4,n).

Original entry on oeis.org

1, 16, 1280, 249856, 90767360, 52975108096, 45344872202240, 53515555843342336, 83285910482761809920, 165262072909347030040576, 407227428060372417275494400, 1219998300294918683087199010816, 4366953142363907901751614431559680, 18406538229888710811704852978971181056
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(4*x): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0 = 4; nmax = 20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2*k+1]/(2*k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2*n +1)*Pi^(-(2*n)-1)*(2*n)!*a^(2*n+1/2)*L[a, 2*n+1, km] // Round; cc[km_] := cc[km] = Table[c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000490 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)
    Range[0, 26, 2]! CoefficientList[Series[Sec[4 x], {x, 0, 26}], x^2] (* Matthew House, Oct 05 2024 *)

Formula

a(n) = A000364(n)*16^n. - Philippe Deléham, Oct 27 2006
a(n) = (2*n)!*[x^(2*n)](sec(4*x)). - Peter Luschny, Nov 21 2021

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A001587 Generalized Euler numbers.

Original entry on oeis.org

2, 6, 46, 522, 7970, 152166, 3487246, 93241002, 2849229890, 97949265606, 3741386059246, 157201459863882, 7205584123783010, 357802951084619046, 19133892392367261646, 1096291279711115037162, 67000387673723462963330, 4350684698032741048452486, 299131045427247559446422446
Offset: 0

Views

Author

Keywords

Comments

These numbers are related to the values at negative integers of the L-functions for two primitive Dirichlet characters of conductor 24. - F. Chapoton, Oct 05 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A000192 and A000411. Overview in A349264.
Similar sequences: A000111, A225147.

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
  • Sage
    t = PowerSeriesRing(QQ, 't').gen()
    f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020

Formula

E.g.f.: 2 (sin(3 x) + cos(3 x)) / (2 cos(4 x) - 1). - F. Chapoton, Oct 06 2020
a(n) ~ 2^(2*n + 2) * 3^(n + 1/2) * n^(n + 1/2) / (exp(n) * Pi^(n + 1/2)). - Vaclav Kotesovec, Nov 05 2021
a(n) = n!*[x^n](sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(11)-a(14) from Lars Blomberg, Sep 10 2015

A064068 Generalized Euler number c(7,n).

Original entry on oeis.org

1, 64, 15872, 9493504, 10562158592, 18878667833344, 49488442978598912, 178867627497727197184, 852509723495811705208832, 5180564635674867885905281024, 39094622102339738427522497380352, 358686739310560735577543742129700864, 3931974790759726002374736527410407145472
Offset: 0

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Row 7 of A235605.

Programs

  • Maple
    egf := sec(7*x)*(cos(x) + cos(3*x) - cos(5*x)): ser := series(egf, x, 24):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    Range[0, 24, 2]! CoefficientList[Series[Sec[7 x] (Cos[x] + Cos[3 x] - Cos[5 x]), {x, 0, 24}], x^2] (* Matthew House, Oct 25 2024 *)

Formula

a(n) = (2*n)!*[x^(2*n)](sec(7*x)*(cos(x) + cos(3*x) - cos(5*x))). - Peter Luschny, Nov 21 2021

A064069 Generalized Euler number c(8,n).

Original entry on oeis.org

2, 96, 29184, 22634496, 32864600064, 76717014122496, 262665886073094144, 1239981021847665770496, 7719096548270543600615424, 61267211781784116552580202496, 603881788505747521507846892027904, 7236592671961544936200760521440362496, 103612803724706836868168667250308188995584
Offset: 0

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Programs

  • Maple
    egf := sec(8*x)*2*cos(4*x): ser := series(egf, x, 24):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    Range[0, 24, 2]! CoefficientList[Series[2 Sec[8 x] Cos[4 x], {x, 0, 24}], x^2] (* Matthew House, Oct 25 2024 *)

Formula

a(n) = 2^(4n+5) * A000281(n).
a(n) = (2*n)!*[x^(2*n)](sec(8*x)*2*cos(4*x)). - Peter Luschny, Nov 21 2021

A064070 Generalized Euler number c(9,n).

Original entry on oeis.org

2, 126, 49410, 48649086, 89434106370, 264235243691646, 1145011717430672130, 6841110155700330881406, 53899295662946509072626690, 541439307193573593050370186366, 6754273504043546592593642328610050, 102439130403410639137159601119206854526
Offset: 0

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Row 9 of A235605.

Programs

  • Maple
    egf := sec(9*x)*2*cos(3*x)^2: ser := series(egf, x, 24):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..10); # Peter Luschny, Nov 21 2021
  • Mathematica
    Range[0, 22, 2]! CoefficientList[Series[2 Sec[9 x] Cos[3 x]^2, {x, 0, 22}], x^2] (* Matthew House, Oct 27 2024 *)

Formula

a(n) = (2*n)!*[x^(2*n)](sec(9*x)*2*cos(3*x)^2). - Peter Luschny, Nov 21 2021

A064073 Generalized tangent number d(8,n).

Original entry on oeis.org

8, 1408, 739328, 806453248, 1506300919808, 4297849713983488, 17390688314209599488, 94727563504456856240128, 668321603392783694711226368, 5928595592752632717848942215168, 64586438563324327821773422563688448, 847680268223550650928681687352090820608
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Programs

  • Maple
    egf := sec(8*x)*2*sin(4*x): ser := series(egf, x, 24):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..10); # Peter Luschny, Nov 21 2021

Formula

E.g.f.: Sum_{k>0} a(k)x^(2k-1)/(2k-1)! = 2*sin(4x)/cos(8x).
a(n) = 2^(4n-1) * A000464(n-1).
a(n) = (2*n-1)!*[x^(2*n-1)](sec(8*x)*2*sin(4*x)). - Peter Luschny, Nov 21 2021

A349265 Generalized Euler numbers, a(n) = n!*[x^n](sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x))).

Original entry on oeis.org

2, 4, 30, 272, 3522, 55744, 1066590, 23750912, 604935042, 17328937984, 551609685150, 19313964388352, 737740947722562, 30527905292468224, 1360427147514751710, 64955605537174126592, 3308161927353377294082, 179013508069217017790464, 10256718523496425979562270
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Comments

For references and examples see A349264.

Crossrefs

Programs

  • Mathematica
    m = 18; CoefficientList[Series[Sec[5*x] * (Sin[x] + Sin[3*x] + Cos[2*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(x) + sin(3*x) + cos(2*x) + cos(4*x))/cos(5*x)))} \\ Andrew Howroyd, Nov 20 2021
  • Sage
    t = PowerSeriesRing(QQ, 't', default_prec=19).gen()
    f = (sin(t) + sin(3*t) + cos(2*t) + cos(4*t)) / cos(5*t)
    f.egf_to_ogf().list()
    

A349266 Generalized Euler numbers, a(n) = n!*[x^n](sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x))).

Original entry on oeis.org

1, 8, 64, 904, 15872, 355688, 9493504, 296327464, 10562158592, 423645846728, 18878667833344, 925434038426824, 49488442978598912, 2866986638191472168, 178867627497727197184, 11956421282992330042984, 852509723495811705208832, 64584221654333725499376008
Offset: 0

Views

Author

Peter Luschny, Nov 21 2021

Keywords

Comments

For references and cross references, compare the overview in A349264.

Crossrefs

Row 7 of A349271.
Bisections: A064068, A064072.
Cf. A349264.

Programs

  • Maple
    sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
  • Mathematica
    m = 17; CoefficientList[Series[Sec[7*x] * (-Sin[2*x] + Sin[4*x] + Sin[6*x] + Cos[x] + Cos[3*x] - Cos[5*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)

A349267 Generalized Euler numbers, a(n) = n!*[x^n](sec(8*x)*2*(sin(4*x) + cos(4*x))).

Original entry on oeis.org

2, 8, 96, 1408, 29184, 739328, 22634496, 806453248, 32864600064, 1506300919808, 76717014122496, 4297849713983488, 262665886073094144, 17390688314209599488, 1239981021847665770496, 94727563504456856240128, 7719096548270543600615424, 668321603392783694711226368
Offset: 0

Views

Author

Peter Luschny, Nov 21 2021

Keywords

Comments

For references and cross references, compare the overview in A349264.

Crossrefs

Row 8 of A349271.
Bisections: A064069, A064073.
Cf. A349264.

Programs

  • Maple
    sec(8*x)*2*(sin(4*x) + cos(4*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
  • Mathematica
    m = 17; CoefficientList[Series[2 * Sec[8*x] * (Sin[4*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
Previous Showing 11-20 of 22 results. Next