A000318
Generalized tangent numbers d(4,n).
Original entry on oeis.org
4, 128, 16384, 4456448, 2080374784, 1483911200768, 1501108249821184, 2044143848640217088, 3605459138582973251584, 7995891855149741436305408, 21776918737280678860353961984, 71454103701490016776039304265728, 278008871543597996197497752082448384
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..100
- D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Padé approximants.
-
egf := sec(4*x)*sin(4*x): ser := series(egf, x, 26):
seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
-
nn = 30; t = Rest@Union[Range[0, nn - 1]! CoefficientList[Series[Tan[x], {x, 0, nn}], x]]; t2 = t*2^Range[2, 2*nn, 4] (* T. D. Noe, Jun 19 2012 *)
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000
A000490
Generalized Euler numbers c(4,n).
Original entry on oeis.org
1, 16, 1280, 249856, 90767360, 52975108096, 45344872202240, 53515555843342336, 83285910482761809920, 165262072909347030040576, 407227428060372417275494400, 1219998300294918683087199010816, 4366953142363907901751614431559680, 18406538229888710811704852978971181056
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Matthew House, Table of n, a(n) for n = 0..194
- D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
-
egf := sec(4*x): ser := series(egf, x, 26):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
-
a0 = 4; nmax = 20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2*k+1]/(2*k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2*n +1)*Pi^(-(2*n)-1)*(2*n)!*a^(2*n+1/2)*L[a, 2*n+1, km] // Round; cc[km_] := cc[km] = Table[c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000490 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)
Range[0, 26, 2]! CoefficientList[Series[Sec[4 x], {x, 0, 26}], x^2] (* Matthew House, Oct 05 2024 *)
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
A001587
Generalized Euler numbers.
Original entry on oeis.org
2, 6, 46, 522, 7970, 152166, 3487246, 93241002, 2849229890, 97949265606, 3741386059246, 157201459863882, 7205584123783010, 357802951084619046, 19133892392367261646, 1096291279711115037162, 67000387673723462963330, 4350684698032741048452486, 299131045427247559446422446
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Lars Blomberg, Table of n, a(n) for n = 0..199
- LMFDB, character 24.5
- LMFDB, character 24.11
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
-
egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
-
t = PowerSeriesRing(QQ, 't').gen()
f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020
A064068
Generalized Euler number c(7,n).
Original entry on oeis.org
1, 64, 15872, 9493504, 10562158592, 18878667833344, 49488442978598912, 178867627497727197184, 852509723495811705208832, 5180564635674867885905281024, 39094622102339738427522497380352, 358686739310560735577543742129700864, 3931974790759726002374736527410407145472
Offset: 0
-
egf := sec(7*x)*(cos(x) + cos(3*x) - cos(5*x)): ser := series(egf, x, 24):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
-
Range[0, 24, 2]! CoefficientList[Series[Sec[7 x] (Cos[x] + Cos[3 x] - Cos[5 x]), {x, 0, 24}], x^2] (* Matthew House, Oct 25 2024 *)
A064069
Generalized Euler number c(8,n).
Original entry on oeis.org
2, 96, 29184, 22634496, 32864600064, 76717014122496, 262665886073094144, 1239981021847665770496, 7719096548270543600615424, 61267211781784116552580202496, 603881788505747521507846892027904, 7236592671961544936200760521440362496, 103612803724706836868168667250308188995584
Offset: 0
-
egf := sec(8*x)*2*cos(4*x): ser := series(egf, x, 24):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
-
Range[0, 24, 2]! CoefficientList[Series[2 Sec[8 x] Cos[4 x], {x, 0, 24}], x^2] (* Matthew House, Oct 25 2024 *)
A064070
Generalized Euler number c(9,n).
Original entry on oeis.org
2, 126, 49410, 48649086, 89434106370, 264235243691646, 1145011717430672130, 6841110155700330881406, 53899295662946509072626690, 541439307193573593050370186366, 6754273504043546592593642328610050, 102439130403410639137159601119206854526
Offset: 0
-
egf := sec(9*x)*2*cos(3*x)^2: ser := series(egf, x, 24):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..10); # Peter Luschny, Nov 21 2021
-
Range[0, 22, 2]! CoefficientList[Series[2 Sec[9 x] Cos[3 x]^2, {x, 0, 22}], x^2] (* Matthew House, Oct 27 2024 *)
A064073
Generalized tangent number d(8,n).
Original entry on oeis.org
8, 1408, 739328, 806453248, 1506300919808, 4297849713983488, 17390688314209599488, 94727563504456856240128, 668321603392783694711226368, 5928595592752632717848942215168, 64586438563324327821773422563688448, 847680268223550650928681687352090820608
Offset: 1
-
egf := sec(8*x)*2*sin(4*x): ser := series(egf, x, 24):
seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..10); # Peter Luschny, Nov 21 2021
A349265
Generalized Euler numbers, a(n) = n!*[x^n](sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x))).
Original entry on oeis.org
2, 4, 30, 272, 3522, 55744, 1066590, 23750912, 604935042, 17328937984, 551609685150, 19313964388352, 737740947722562, 30527905292468224, 1360427147514751710, 64955605537174126592, 3308161927353377294082, 179013508069217017790464, 10256718523496425979562270
Offset: 0
-
m = 18; CoefficientList[Series[Sec[5*x] * (Sin[x] + Sin[3*x] + Cos[2*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
-
seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(x) + sin(3*x) + cos(2*x) + cos(4*x))/cos(5*x)))} \\ Andrew Howroyd, Nov 20 2021
-
t = PowerSeriesRing(QQ, 't', default_prec=19).gen()
f = (sin(t) + sin(3*t) + cos(2*t) + cos(4*t)) / cos(5*t)
f.egf_to_ogf().list()
A349266
Generalized Euler numbers, a(n) = n!*[x^n](sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x))).
Original entry on oeis.org
1, 8, 64, 904, 15872, 355688, 9493504, 296327464, 10562158592, 423645846728, 18878667833344, 925434038426824, 49488442978598912, 2866986638191472168, 178867627497727197184, 11956421282992330042984, 852509723495811705208832, 64584221654333725499376008
Offset: 0
-
sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
-
m = 17; CoefficientList[Series[Sec[7*x] * (-Sin[2*x] + Sin[4*x] + Sin[6*x] + Cos[x] + Cos[3*x] - Cos[5*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
A349267
Generalized Euler numbers, a(n) = n!*[x^n](sec(8*x)*2*(sin(4*x) + cos(4*x))).
Original entry on oeis.org
2, 8, 96, 1408, 29184, 739328, 22634496, 806453248, 32864600064, 1506300919808, 76717014122496, 4297849713983488, 262665886073094144, 17390688314209599488, 1239981021847665770496, 94727563504456856240128, 7719096548270543600615424, 668321603392783694711226368
Offset: 0
-
sec(8*x)*2*(sin(4*x) + cos(4*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
-
m = 17; CoefficientList[Series[2 * Sec[8*x] * (Sin[4*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
Comments