cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A371518 G.f. A(x) satisfies A(x) = (1 + x*A(x)^2 / (1-x))^2.

Original entry on oeis.org

1, 2, 11, 72, 525, 4104, 33647, 285526, 2486809, 22103726, 199697284, 1828472914, 16929944932, 158246198836, 1491210732346, 14151603542612, 135130396860130, 1297381593071890, 12516650939119421, 121281286192026308, 1179769340479567499
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+1, k)/(3*k+2));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+1,k)/(3*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A349331.

A364792 G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^2).

Original entry on oeis.org

1, 1, 5, 33, 250, 2054, 17800, 160183, 1482535, 14022415, 134943095, 1317046306, 13005842030, 129708875695, 1304588594925, 13217663310305, 134775670244250, 1382019265706377, 14242560597119165, 147435736533094415, 1532365596794307010
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2023

Keywords

Crossrefs

Programs

  • Maple
    A364792 := proc(n)
        if n = 0 then
            1;
        else
            add( binomial(n,k) * binomial(4*n-2*k,n-1-k),k=0..n-1) ;
            %/n ;
        end if ;
    end proc:
    seq(A364792(n),n=0..80); # R. J. Mathar, Aug 10 2023
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n-2*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-2*k,n-1-k) for n > 0.
D-finite with recurrence 3*n*(36653*n-48128)*(3*n-1)*(3*n+1)*a(n) +5*(-2160545*n^4 +5139476*n^3 -2463019*n^2 -1385144*n +913296)*a(n-1) +4*(-948403*n^4 +17991137*n^3 -77629283*n^2 +126107767*n -70578450)*a(n-2) +10*(n-3)*(599072*n^3 -5090881*n^2 +13501042*n -11263100)*a(n-3) -50*(6861*n-12886)*(n-3) *(n-4)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Aug 10 2023

A371890 G.f. A(x) satisfies A(x) = 1 - x/A(x)^3 * (1 - A(x) - A(x)^4).

Original entry on oeis.org

1, 1, 2, 1, -4, 0, 37, 16, -313, -214, 3005, 2943, -30391, -39432, 318606, 522863, -3418205, -6889626, 37219105, 90415336, -408758113, -1183054415, 4505089166, 15442590040, -49599878555, -201138280510, 542949788652, 2614332298108, -5877502079248
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-4*k,n-k-1) for n > 0.

A378325 G.f. A(x) = Sum_{n>=0} a(n)*x^n, where a(n) = Sum_{k=0..n-1} [x^k] A(x)^k for n >= 1 with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 7, 41, 338, 3499, 42969, 606351, 9633640, 169888025, 3290314970, 69409429043, 1584105116525, 38894316619948, 1022411500472240, 28653072049382809, 852911635849385778, 26876978490909421289, 893929164892155754432, 31296785296935394097351, 1150551256823546563078988
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^k, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ after Paul D. Hanna

Formula

a(n) ~ c * n! / (n^alpha * LambertW(1)^n), where alpha = 2 - 2*LambertW(1) - 1/(1 + LambertW(1)) = 0.22760967581532... and c = 0.323194722450152336...

A371891 G.f. A(x) satisfies A(x) = 1 - x/A(x)^2 * (1 - A(x) - A(x)^4).

Original entry on oeis.org

1, 1, 3, 8, 21, 61, 203, 724, 2600, 9291, 33525, 123537, 463796, 1759184, 6706976, 25696524, 99069838, 384429159, 1499778661, 5875513183, 23099489574, 91123553946, 360649997698, 1431724692900, 5699142280127, 22741352276386, 90949212893978
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(2*n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-4*k,n-k-1) for n > 0.

A382916 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^2 ).

Original entry on oeis.org

1, 1, 6, 41, 316, 2636, 23192, 211926, 1992032, 19138016, 187091252, 1855104372, 18612229836, 188601299149, 1927443803738, 19843158497163, 205602235405524, 2142401581747657, 22436439910929038, 236023405797017891, 2492914862240934612, 26426682321857813417
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1-x)^2.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).

A382917 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^3 ).

Original entry on oeis.org

1, 1, 7, 52, 432, 3878, 36694, 360498, 3642534, 37613947, 395204413, 4211469308, 45409525116, 494500127617, 5430864937915, 60083846523038, 669005596426438, 7491245872785003, 84305386452532885, 953020276395635246, 10816782722212619970, 123218274878407738497
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1-x)^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).

A369213 Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^2) ).

Original entry on oeis.org

1, 4, 23, 152, 1091, 8264, 65021, 526236, 4352942, 36637576, 312763225, 2701521420, 23567184019, 207343098824, 1837623853627, 16391011930424, 147029997389386, 1325506554640872, 12003342144724338, 109136630802023808, 995907341988015935
Offset: 0

Views

Author

Seiichi Manyama, Jan 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-4*k+4, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(4*n-4*k+4,n-2*k).
D-finite with recurrence -3*(4813*n-632)*(3*n+2)*(3*n+4)*(n+1)*a(n) +2*(206141*n^4+1346849*n^3+118471*n^2-121301*n-7584)*a(n-1) +4*(1658281*n^4-3845638*n^3+4346111*n^2-2458136*n+406104)*a(n-2) +8*(n-2)*(2032705*n^3-6230304*n^2+5971619*n-935490)*a(n-3) +16*(n-2)*(n-3)*(958321*n^2-2152552*n+309963)*a(n-4) +544*(8765*n-1142)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 28 2024
Previous Showing 11-18 of 18 results.