cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A373408 Minimum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 15, 22, 23, 30, 31, 34, 35, 38, 39, 42, 43, 47, 58, 59, 62, 66, 67, 70, 71, 74, 78, 79, 83, 86, 87, 94, 95, 102, 103, 106, 107, 110, 111, 114, 115, 119, 123, 130, 131, 134, 138, 139, 142, 143, 146, 155, 158, 159, 166, 167, 174, 178, 179
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The maximum is given by A007674.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.
Consists of 1 and all squarefree numbers n such that n - 1 is also squarefree.

Examples

			Row-minima of:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
  38
  39  41
  42
  43  46
  47  51  53  55  57
		

Crossrefs

Functional neighbors: A005381, A006512, A007674, A072284, A373127, A373410, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

Formula

a(1) = 1; a(n>1) = A007674(n-1) + 1.

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A045691 Number of binary words of length n with autocorrelation function 2^(n-1)+1.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 19, 41, 77, 159, 307, 625, 1231, 2481, 4921, 9883, 19689, 39455, 78751, 157661, 315015, 630337, 1260049, 2520723, 5040215, 10081661, 20160841, 40324163, 80643405, 161291731, 322573579, 645157041, 1290294393, 2580608475, 5161177495
Offset: 0

Views

Author

Torsten Sillke (torsten.sillke(AT)lhsystems.com)

Keywords

Comments

From Gus Wiseman, Jan 22 2022: (Start)
Also the number of subsets of {1..n} containing n but without adjacent elements of quotient 1/2. The Heinz numbers of these sets are a subset of the squarefree terms of A320340. For example, the a(1) = 1 through a(6) = 19 subsets are:
{1} {2} {3} {4} {5} {6}
{1,3} {1,4} {1,5} {1,6}
{2,3} {3,4} {2,5} {2,6}
{1,3,4} {3,5} {4,6}
{2,3,4} {4,5} {5,6}
{1,3,5} {1,4,6}
{1,4,5} {1,5,6}
{2,3,5} {2,5,6}
{3,4,5} {3,4,6}
{1,3,4,5} {3,5,6}
{2,3,4,5} {4,5,6}
{1,3,4,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
(End)

Crossrefs

If a(n) counts subsets of {1..n} with n and without adjacent quotients 1/2:
- The version with quotients <= 1/2 is A018819, partitions A000929.
- The version with quotients < 1/2 is A040039, partitions A342098.
- The version with quotients >= 1/2 is A045690(n+1), partitions A342094.
- The version with quotients > 1/2 is A045690, partitions A342096.
- Partitions of this type are counted by A350837, ranked by A350838.
- Strict partitions of this type are counted by A350840.
- For differences instead of quotients we have A350842, strict A350844.
- Partitions not of this type are counted by A350846, ranked by A350845.
A000740 = relatively prime subsets of {1..n} containing n.
A002843 = compositions with all adjacent quotients >= 1/2.
A050291 = double-free subsets of {1..n}.
A154402 = partitions with all adjacent quotients 2.
A308546 = double-closed subsets of {1..n}, with maximum: shifted right.
A323092 = double-free integer partitions, ranked by A320340, strict A120641.
A326115 = maximal double-free subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]!=1/2,{i,2,Length[#]}]&]],{n,0,15}] (* Gus Wiseman, Jan 22 2022 *)

Formula

a(2*n-1) = 2*a(2*n-2) - a(n) for n >= 2; a(2*n) = 2*a(2*n-1) + a(n) for n >= 2.

Extensions

More terms from Sean A. Irvine, Mar 18 2021

A350846 Number of integer partitions of n with at least two adjacent parts of quotient 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(3) = 1 through a(9) = 12 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (521)      (621)
                       (2211)   (3211)    (3221)     (3321)
                       (21111)  (22111)   (4211)     (4221)
                                (211111)  (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

The complement is counted by A350837, strict A350840.
The complimentary additive version is A350842, strict A350844.
These partitions are ranked by A350845, complement A350838.
A000041 = integer partitions.
A323092 = double-free integer partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]

A351595 Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12):
  1   2   3   4   5     6     7     8     9     A     B       C
                  221   321   331   332   432   442   443     543
                              421   431   441   532   542     552
                                    521   531   541   551     642
                                          621   631   632     651
                                                721   641     732
                                                      731     741
                                                      821     831
                                                      33221   921
                                                              43221
		

Crossrefs

The ordered version (compositions) is A000213 shifted right once.
All odd-length partitions are counted by A027193.
The opposite appears to be A122130, even-length A351008, any length A122129.
This appears to be the odd-length case of A122135, even-length A122134.
The case that is constant at odd indices:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
For equality instead of inequality:
- any length: A351003
- odd-length: A000009 (except at 0)
- even-length: A351012
- opposite any length: A351004
- opposite odd-length: A351594
- opposite even-length: A035363

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A351593 Number of odd-length integer partitions of n into parts that are alternately equal and strictly decreasing.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 3, 5, 4, 6, 4, 8, 6, 9, 6, 12, 7, 14, 10, 16, 11, 20, 13, 24, 16, 28, 18, 34, 21, 40, 26, 46, 30, 56, 34, 64, 41, 75, 48, 88, 54, 102, 64, 118, 73, 138, 84, 159, 98, 182, 112, 210, 128, 242, 148, 276, 168, 318
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2022

Keywords

Comments

Also odd-length partitions whose run-lengths are all 2's, except for the last, which is 1.

Examples

			The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15):
  1  2  3  4  5    6  7    8    9    A    B      C    D      E    F
              221     331  332  441  442  443    552  553    554  663
                                          551         661    662  771
                                          33221       44221       44331
                                                                  55221
		

Crossrefs

The even-length ordered version is A003242, ranked by A351010.
The opposite version is A053251, even-length A351007, any length A351006.
This is the odd-length case of A351005, even-length A035457.
With only equalities we get:
- opposite any length: A351003
- opposite odd-length: A000009 (except at 0)
- opposite even-length: A351012
- any length: A351004
- odd-length: A351594
- even-length: A035363
Without equalities we get:
- opposite any length: A122129 (apparently)
- opposite odd-length: A122130 (apparently)
- opposite even-length: A351008
- any length: A122135 (apparently)
- odd-length: A351595
- even-length: A122134 (apparently)

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[If[EvenQ[i],#[[i]]!=#[[i+1]],#[[i]]==#[[i+1]]],{i,Length[#]-1}]&]],{n,0,30}]

A351594 Number of odd-length integer partitions y of n that are alternately constant, meaning y_i = y_{i+1} for all odd i.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 4, 2, 7, 3, 9, 4, 13, 6, 19, 6, 26, 10, 35, 12, 49, 16, 64, 20, 87, 27, 115, 32, 151, 44, 195, 53, 256, 69, 328, 84, 421, 108, 537, 130, 682, 167, 859, 202, 1085, 252, 1354, 305, 1694, 380, 2104, 456, 2609, 564, 3218, 676, 3968, 826, 4863
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

These are partitions with all even run-lengths except for the last, which is odd.

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)    (7)        (8)    (9)
            (111)       (221)    (222)  (331)      (332)  (333)
                        (11111)         (22111)           (441)
                                        (1111111)         (22221)
                                                          (33111)
                                                          (2211111)
                                                          (111111111)
		

Crossrefs

The ordered version (compositions) is A016116 shifted right once.
All odd-length partitions are counted by A027193.
The opposite version is A117409, even-length A351012, any length A351003.
Replacing equal with unequal relations appears to give:
- any length: A122129
- odd length: A122130
- even length: A351008
- opposite any length: A122135
- opposite odd length: A351595
- opposite even length: A122134
This is the odd-length case of A351004, even-length A035363.
The case that is also strict at even indices is:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
A reverse version is A096441; see also A349060.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]
Previous Showing 21-27 of 27 results.