cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A353853 Trajectory of the composition run-sum transformation (or condensation) of n, using standard composition numbers.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 5, 6, 7, 4, 8, 9, 10, 8, 11, 10, 8, 12, 13, 14, 10, 8, 15, 8, 16, 17, 18, 19, 18, 20, 21, 17, 22, 23, 20, 24, 25, 26, 24, 27, 26, 24, 28, 20, 29, 21, 17, 30, 18, 31, 16, 32, 33, 34, 35, 34, 36, 32, 37, 38, 39, 36, 32, 40, 41, 42, 32
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 given in row 11 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).

Examples

			Triangle begins:
   0
   1
   2
   3  2
   4
   5
   6
   7  4
   8
   9
  10  8
  11 10  8
  12
  13
  14 10  8
For example, the trajectory of 29 is 29 -> 21 -> 17, corresponding to the compositions (1,1,2,1) -> (2,2,1) -> (4,1).
		

Crossrefs

These sequences for partitions are A353840-A353846.
This is the iteration of A353847, with partition version A353832.
Row-lengths are A353854, counted by A353859.
Final terms are A353855.
Counting rows by weight of final term gives A353856.
Rows ending in a power of 2 are A353857, counted by A353858.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A329739 counts compositions with all distinct run-lengths.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353929 counts distinct runs in binary expansion, firsts A353930.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[NestWhileList[stcinv[Total/@Split[stc[#]]]&,n,MatchQ[stc[#],{_,x_,x_,_}]&],{n,0,50}]

A351017 Number of binary words of length n with all distinct run-lengths.

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 22, 26, 38, 54, 114, 130, 202, 266, 386, 702, 870, 1234, 1702, 2354, 3110, 5502, 6594, 9514, 12586, 17522, 22610, 31206, 48630, 60922, 83734, 111482, 149750, 196086, 261618, 336850, 514810, 631946, 862130, 1116654, 1502982, 1916530, 2555734, 3242546
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Examples

			The a(0) = 1 through a(6) = 22 words:
  {}  0   00   000   0000   00000   000000
      1   11   001   0001   00001   000001
               011   0111   00011   000011
               100   1000   00111   000100
               110   1110   01111   000110
               111   1111   10000   001000
                            11000   001110
                            11100   001111
                            11110   011000
                            11111   011100
                                    011111
                                    100000
                                    100011
                                    100111
                                    110000
                                    110001
                                    110111
                                    111001
                                    111011
                                    111100
                                    111110
                                    111111
		

Crossrefs

Using binary expansions instead of words gives A032020, ranked by A044813.
The version for partitions is A098859.
The complement is counted by twice A261982.
The version for compositions is A329739, for runs A351013.
For runs instead of run-lengths we have A351016, twice A351018.
The version for patterns is A351292, for runs A351200.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions where every permutation has all distinct runs.
A351290 ranks compositions with all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adrl(s):
        runlens = [len(list(g)) for k, g in groupby(s)]
        return len(runlens) == len(set(runlens))
    def a(n):
        if n == 0: return 1
        return 2*sum(adrl("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A032020(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
More terms from David A. Corneth, Feb 08 2022 using data from A032020

A353839 Numbers whose prime indices do not have all distinct run-sums.

Original entry on oeis.org

12, 40, 60, 63, 84, 112, 120, 126, 132, 144, 156, 204, 228, 252, 276, 280, 300, 315, 325, 336, 348, 351, 352, 360, 372, 420, 440, 444, 492, 504, 516, 520, 560, 564, 588, 630, 636, 650, 660, 675, 680, 693, 702, 708, 720, 732, 760, 780, 804, 819, 832, 840, 852
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   40: {1,1,1,3}
   60: {1,1,2,3}
   63: {2,2,4}
   84: {1,1,2,4}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  204: {1,1,2,7}
  228: {1,1,2,8}
  252: {1,1,2,2,4}
  276: {1,1,2,9}
  280: {1,1,1,3,4}
  300: {1,1,2,3,3}
  315: {2,2,3,4}
		

Crossrefs

For equal run-sums we have A353833, counted by A304442, nonprime A353834.
The complement is A353838, counted by A353837.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353862 gives the greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A351015 Smallest k such that the k-th composition in standard order has n distinct runs.

Original entry on oeis.org

0, 1, 5, 27, 155, 1655, 18039, 281975
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
It would be very interesting to have a formula or general construction for a(n). - Gus Wiseman, Feb 12 2022

Examples

			The terms together with their binary expansions and corresponding compositions begin:
       0:                    0  ()
       1:                    1  (1)
       5:                  101  (2,1)
      27:                11011  (1,2,1,1)
     155:             10011011  (3,1,2,1,1)
    1655:          11001110111  (1,3,1,1,2,1,1,1)
   18039:      100011001110111  (4,1,3,1,1,2,1,1,1)
  281975:  1000100110101110111  (4,3,1,2,2,1,1,2,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A006939.
Counting not necessarily distinct runs gives A113835 (up to zero).
Using binary expansions instead of standard compositions gives A350952.
These are the positions of first appearances in A351014.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    s=Table[Length[Union[Split[stc[n]]]],{n,0,1000}];
    Table[Position[s,k][[1,1]]-1,{k,Union[s]}]

A351016 Number of binary words of length n with all distinct runs.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 92, 154, 244, 382, 652, 994, 1572, 2414, 3884, 5810, 8996, 13406, 21148, 31194, 47508, 70086, 104844, 156738, 231044, 338998, 496300, 721042, 1064932, 1536550, 2232252, 3213338, 4628852, 6603758, 9554156, 13545314, 19354276
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

These are binary words where the runs of zeros have all distinct lengths and the runs of ones also have all distinct lengths. For n > 0 this is twice the number of terms of A175413 that have n digits in binary.

Examples

			The a(0) = 1 through a(4) = 12 binary words:
  ()   0    00    000    0000
       1    01    001    0001
            10    011    0010
            11    100    0011
                  110    0100
                  111    0111
                         1000
                         1011
                         1100
                         1101
                         1110
                         1111
For example, the word (1,1,0,1) has three runs (1,1), (0), (1), which are all distinct, so is counted under a(4).
		

Crossrefs

The version for compositions is A351013, lengths A329739, ranked by A351290.
The version for [run-]lengths is A351017.
The version for expansions is A351018, lengths A032020, ranked by A175413.
The version for patterns is A351200, lengths A351292.
The version for permutations of prime factors is A351202.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions whose permutations all have all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adr(s):
        runs = [(k, len(list(g))) for k, g in groupby(s)]
        return len(runs) == len(set(runs))
    def a(n):
        if n == 0: return 1
        return 2*sum(adr("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A351018(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
a(33)-a(38) from David A. Corneth, Feb 08 2022

A353835 Number of distinct run-sums of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 3780 are {1,1,2,2,2,3,4}, with distinct run-sums {2,3,4,6}, so a(3780) = 4.
The prime indices of 8820 are {1,1,2,2,3,4,4}, with distinct run-sums {2,3,4,8}, so a(8820) = 4.
The prime indices of 13860 are {1,1,2,2,3,4,5}, with distinct run-sums {2,3,4,5}, so a(13860) = 4.
The prime indices of 92400 are {1,1,1,1,2,3,3,4,5}, with distinct run-sums {2,4,5,6}, so a(92400) = 4.
		

Crossrefs

Positions of first appearances are A002110.
A version for binary expansion is A165413.
Positions of 0's and 1's are A353833, nonprime A353834, counted by A304442.
The case of all distinct run-sums is ranked by A353838, counted by A353837.
The version for compositions is A353849.
The weak version is A353861.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Length[Union[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum)));
    A353835(n) = omega(A353832(n)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = A001221(A353832(n)). [From formula section of A353832] - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A351596 Numbers k such that the k-th composition in standard order has all distinct run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 19, 21, 23, 26, 28, 30, 31, 32, 35, 36, 39, 42, 47, 56, 60, 62, 63, 64, 67, 71, 73, 74, 79, 84, 85, 87, 95, 100, 106, 112, 119, 120, 122, 123, 124, 126, 127, 128, 131, 135, 136, 138, 143, 146, 159, 164, 168, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   7:    111  (1,1,1)
   8:   1000  (4)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
  16:  10000  (5)
  19:  10011  (3,1,1)
  21:  10101  (2,2,1)
  23:  10111  (2,1,1,1)
		

Crossrefs

The version using binary expansions is A044813.
The version for Heinz numbers and prime multiplicities is A130091.
These compositions are counted by A329739, normal A329740.
The version for runs instead of run-lengths is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.
Selected statistics of standard compositions (A066099, A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Length/@Split[stc[#]]&]

A351200 Number of patterns of length n with all distinct runs.

Original entry on oeis.org

1, 1, 3, 11, 53, 305, 2051, 15731, 135697, 1300869, 13726431, 158137851, 1975599321, 26607158781, 384347911211, 5928465081703, 97262304328573, 1691274884085061, 31073791192091251, 601539400910369671, 12238270940611270161, 261071590963047040241
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,2)
              (1,2,3)
              (1,3,2)
              (2,1,1)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
              (3,2,1)
The complement for n = 3 counts the two patterns (1,2,1) and (2,1,2).
		

Crossrefs

The version for run-lengths instead of runs is A351292.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351642 = word structures.
Row sums of A351640.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Split[#]&]],{n,0,6}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
    seq(n)={my(q=S(n)); concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 12 2022

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A351292 Number of patterns of length n with all distinct run-lengths.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 57, 61, 109, 161, 1265, 1317, 2469, 3577, 5785, 43901, 47165, 86337, 127665, 204853, 284197, 2280089, 2398505, 4469373, 6543453, 10570993, 14601745, 22502549, 159506453, 171281529, 314077353, 462623821, 742191037, 1031307185, 1580543969, 2141246229
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(5) = 9 patterns:
  (1)  (1,1)  (1,1,1)  (1,1,1,1)  (1,1,1,1,1)
              (1,1,2)  (1,1,1,2)  (1,1,1,1,2)
              (1,2,2)  (1,2,2,2)  (1,1,1,2,2)
              (2,1,1)  (2,1,1,1)  (1,1,2,2,2)
              (2,2,1)  (2,2,2,1)  (1,2,2,2,2)
                                  (2,1,1,1,1)
                                  (2,2,1,1,1)
                                  (2,2,2,1,1)
                                  (2,2,2,2,1)
The a(6) = 57 patterns grouped by sum:
  111111  111112  111122  112221  111223  111233  112333  122333
          111211  111221  122211  111322  111332  113332  133322
          112111  122111  211122  112222  112223  122233  221333
          211111  221111  221112  211222  113222  133222  223331
                                  221113  122222  211333  333122
                                  222112  211133  222133  333221
                                  222211  221222  222331
                                  223111  222113  233311
                                  311122  222122  331222
                                  322111  222221  332221
                                          222311  333112
                                          233111  333211
                                          311222
                                          322211
                                          331112
                                          332111
		

Crossrefs

The version for runs instead of run-lengths is A351200.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A165413 counts distinct run-lengths in binary expansion, runs A297770.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Length/@Split[#]&]],{n,0,6}]
  • PARI
    P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
    R(u,k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
    seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022

Formula

From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022
Previous Showing 11-20 of 52 results. Next