cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A353853 Trajectory of the composition run-sum transformation (or condensation) of n, using standard composition numbers.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 5, 6, 7, 4, 8, 9, 10, 8, 11, 10, 8, 12, 13, 14, 10, 8, 15, 8, 16, 17, 18, 19, 18, 20, 21, 17, 22, 23, 20, 24, 25, 26, 24, 27, 26, 24, 28, 20, 29, 21, 17, 30, 18, 31, 16, 32, 33, 34, 35, 34, 36, 32, 37, 38, 39, 36, 32, 40, 41, 42, 32
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 given in row 11 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).

Examples

			Triangle begins:
   0
   1
   2
   3  2
   4
   5
   6
   7  4
   8
   9
  10  8
  11 10  8
  12
  13
  14 10  8
For example, the trajectory of 29 is 29 -> 21 -> 17, corresponding to the compositions (1,1,2,1) -> (2,2,1) -> (4,1).
		

Crossrefs

These sequences for partitions are A353840-A353846.
This is the iteration of A353847, with partition version A353832.
Row-lengths are A353854, counted by A353859.
Final terms are A353855.
Counting rows by weight of final term gives A353856.
Rows ending in a power of 2 are A353857, counted by A353858.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A329739 counts compositions with all distinct run-lengths.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353929 counts distinct runs in binary expansion, firsts A353930.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[NestWhileList[stcinv[Total/@Split[stc[#]]]&,n,MatchQ[stc[#],{_,x_,x_,_}]&],{n,0,50}]

A353840 Trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 7, 8, 5, 9, 7, 10, 11, 12, 9, 7, 13, 14, 15, 16, 7, 17, 18, 14, 19, 20, 15, 21, 22, 23, 24, 15, 25, 13, 26, 27, 13, 28, 21, 29, 30, 31, 32, 11, 33, 34, 35, 36, 21, 37, 38, 39, 40, 25, 13, 41, 42, 43, 44, 33, 45, 35, 46, 47, 48, 21, 49, 19
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 given in row 12 corresponds to the partitions (2,1,1) -> (2,2) -> (4).
This is the iteration of the transformation f described by Kimberling at A237685.

Examples

			Triangle begins:
   1
   2
   3
   4  3
   5
   6
   7
   8  5
   9  7
  10
  11
  12  9  7
Row 87780 is the following trajectory (left column), with prime indices shown on the right:
  87780: {1,1,2,3,4,5,8}
  65835: {2,2,3,4,5,8}
  51205: {3,4,4,5,8}
  19855: {3,5,8,8}
   2915: {3,5,16}
		

Crossrefs

The version for run-lengths instead of sums is A325239 or A325277.
This is the iteration of A353832, with composition version A353847.
Row-lengths are A353841, counted by A353846.
Final terms are A353842.
Counting rows by final omega gives A353843.
Rows ending in a prime number are A353844, counted by A353845.
These sequences for compositions are A353853-A353859.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A182850 or A323014 gives frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353862 gives greatest run-sum of prime indices, least A353931.

Programs

  • Mathematica
    Table[NestWhileList[Times@@Prime/@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&,n,Not@*SquareFreeQ],{n,30}]

A353859 Triangle read by rows where T(n,k) is the number of integer compositions of n with composition run-sum trajectory of length k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 4, 2, 2, 0, 0, 7, 7, 2, 0, 0, 0, 14, 14, 4, 0, 0, 0, 0, 23, 29, 12, 0, 0, 0, 0, 0, 39, 56, 25, 8, 0, 0, 0, 0, 0, 71, 122, 53, 10, 0, 0, 0, 0, 0, 0, 124, 246, 126, 16, 0, 0, 0, 0, 0, 0, 0, 214, 498, 264, 48, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums transformation (or condensation, represented by A353847) until an anti-run is reached. For example, the trajectory (2,4,2,1,1) -> (2,4,2,2) -> (2,4,4) -> (2,8) is counted under T(10,4).

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   3   1   0
   0   4   2   2   0
   0   7   7   2   0   0
   0  14  14   4   0   0   0
   0  23  29  12   0   0   0   0
   0  39  56  25   8   0   0   0   0
   0  71 122  53  10   0   0   0   0   0
   0 124 246 126  16   0   0   0   0   0   0
   0 214 498 264  48   0   0   0   0   0   0   0
For example, row n = 5 counts the following compositions:
  (5)    (113)    (1121)
  (14)   (122)    (1211)
  (23)   (221)
  (32)   (311)
  (41)   (1112)
  (131)  (2111)
  (212)  (11111)
		

Crossrefs

Column k = 1 is A003242, ranked by A333489, complement A261983.
Row sums are A011782.
Positive row-lengths are A070939.
The version for partitions is A353846, ranked by A353841.
This statistic (trajectory length) is ranked by A353854, firsts A072639.
Counting by length of last part instead of number of parts gives A353856.
A333627 ranks the run-lengths of standard compositions.
A353847 represents the run-sums of a composition, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    rsc[y_]:=If[y=={},{},NestWhileList[Total/@Split[#]&,y,MatchQ[#,{_,x_,x_,_}]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[rsc[#]]==k&]],{n,0,10},{k,0,n}]

A354584 Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 2, 4, 3, 4, 1, 3, 5, 2, 2, 6, 1, 4, 2, 3, 4, 7, 1, 4, 8, 2, 3, 2, 4, 1, 5, 9, 3, 2, 6, 1, 6, 6, 2, 4, 10, 1, 2, 3, 11, 5, 2, 5, 1, 7, 3, 4, 2, 4, 12, 1, 8, 2, 6, 3, 3, 13, 1, 2, 4, 14, 2, 5, 4, 3, 1, 9, 15, 4, 2, 8, 1, 6, 2, 7, 2, 6, 16
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Triangle begins:
  .
  1
  2
  2
  3
  1 2
  4
  3
  4
  1 3
  5
  2 2
  6
  1 4
  2 3
For example, the prime indices of 630 are {1,2,2,3,4}, so row 630 is (1,4,3,4).
		

Crossrefs

Positions of first appearances are A308495 plus 1.
The version for compositions is A353932, ranked by A353847.
Classes:
- singleton rows: A000961
- constant rows: A353833, nonprime A353834, counted by A304442
- strict rows: A353838, counted by A353837, complement A353839
Statistics:
- row lengths: A001221
- row sums: A056239
- row products: A304117
- row ranks (as partitions): A353832
- row image sizes: A353835
- row maxima: A353862
- row minima: A353931
A001222 counts prime factors with multiplicity.
A112798 and A296150 list partitions by rank.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct sums of partial runs of prime indices.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,30}]

A353839 Numbers whose prime indices do not have all distinct run-sums.

Original entry on oeis.org

12, 40, 60, 63, 84, 112, 120, 126, 132, 144, 156, 204, 228, 252, 276, 280, 300, 315, 325, 336, 348, 351, 352, 360, 372, 420, 440, 444, 492, 504, 516, 520, 560, 564, 588, 630, 636, 650, 660, 675, 680, 693, 702, 708, 720, 732, 760, 780, 804, 819, 832, 840, 852
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   40: {1,1,1,3}
   60: {1,1,2,3}
   63: {2,2,4}
   84: {1,1,2,4}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  204: {1,1,2,7}
  228: {1,1,2,8}
  252: {1,1,2,2,4}
  276: {1,1,2,9}
  280: {1,1,1,3,4}
  300: {1,1,2,3,3}
  315: {2,2,3,4}
		

Crossrefs

For equal run-sums we have A353833, counted by A304442, nonprime A353834.
The complement is A353838, counted by A353837.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353862 gives the greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A353861 Number of distinct weak run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 4, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 4, 2, 3, 3, 7, 3, 4, 2, 4, 3, 4, 2, 5, 2, 3, 4, 4, 3, 4, 2, 5, 5, 3, 2, 4, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 6, 2, 4, 4, 5, 2, 4, 2, 5, 4, 3, 2, 5
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A weak run-sum of a sequence is the sum of any consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with weak runs {}, {1}, {1,1}, {1,1,1}, {2}, {2,2}, which have sums 0, 1, 2, 3, 2, 4, of which 5 are distinct, so a(72) = 5.
		

Crossrefs

Positions of 2's are A000040.
Positions of first appearances are A000079.
The strong version is A353835, firsts A002110.
Partitions with distinct run-sums are ranked by A353838, counted by A353837.
The strong version for compositions is A353849.
The greatest run-sum is given by A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.

Programs

  • Mathematica
    Table[Length[Union@@Cases[FactorInteger[n],{p_,k_}:>Range[0,k]*PrimePi[p]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353861(n) = if(1==n,n,my(pruns = pis_to_runs(n), runsum = 0, runsums = List([])); for(i=1,#pruns, listput(runsums, runsum); if((i>1) && pruns[i] == pruns[i-1], runsum += pruns[i], runsum = pruns[i])); listput(runsums, runsum); #Set(runsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A353860 Number of collapsible integer compositions of n.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 12, 2, 26, 9, 36, 2, 206, 2, 132, 40, 677, 2, 1746, 2, 3398, 136, 2052, 2, 44388, 33, 8196, 730, 79166, 2, 263234, 2, 458330, 2056, 131076, 160, 8804349, 2, 524292, 8200, 13662156, 2, 36036674, 2, 48844526, 90282, 8388612, 2, 1971667502, 129
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

If a collapse is a joining of some number of adjacent equal parts of an integer composition, we call a composition collapsible iff by some sequence of collapses it can be reduced to a single part. An example of such a sequence of collapses is (1,1,1,3,2,1,1,2) -> (3,3,2,1,1,2) -> (3,3,2,2,2) -> (6,2,2,2) -> (6,6) -> (12), which shows that (1,1,1,3,2,1,1,2) is a collapsible composition of 12.

Examples

			The a(0) = 0 through a(6) = 12 compositions:
  .  (1)  (2)   (3)    (4)     (5)      (6)
          (11)  (111)  (22)    (11111)  (33)
                       (112)            (222)
                       (211)            (1113)
                       (1111)           (1122)
                                        (2112)
                                        (2211)
                                        (3111)
                                        (11112)
                                        (11211)
                                        (21111)
                                        (111111)
		

Crossrefs

The version for partitions is A275870, ranked by A300273.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A011782 counts compositions.
A353847 represents the run-sums of a composition, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    repcams[q_List]:=repcams[q]=Union[{q},If[UnsameQ@@q,{},Union@@repcams/@ Union[Insert[Drop[q,#],Plus@@Take[q,#],First[#]]&/@ Select[Tuples[Range[Length[q]],2],And[Less@@#,SameQ@@Take[q,#]]&]]]];
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[repcams[#],{n}]&]],{n,0,15}]
  • PARI
    a(n) = if(n==0, 0, 1 - sumdiv(n, d, if(d>1, moebius(d)*a(n/d)^d ))) \\ Andrew Howroyd, Feb 04 2023

Formula

Sum_{d|n} mu(d)*a(n/d)^d = 1 for n > 0. - Andrew Howroyd, Feb 04 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Feb 04 2023

A353744 Numbers k such that the k-th composition in standard order has all equal run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 54, 58, 63, 64, 65, 66, 68, 69, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 101, 102, 104, 105, 108, 109, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 2362 in standard order is (3,3,1,1,2,2), with run-lengths (2,2,2), so 2362 is in the sequence.
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A072774, counted by A047966.
These compositions are counted by A329738.
For distinct instead of equal run-lengths we have A351596.
For run-sums instead of lengths we have A353848, counted by A353851.
For distinct run-sums we have A353852, counted by A353850.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353847 represents the composition run-sum transformation.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353833 ranks partitions with all equal run-sums, counted by A304442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@Length/@Split[stc[#]]&]

A375123 Weakly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 1, 1, 8, 9, 2, 5, 1, 3, 1, 1, 16, 17, 18, 9, 2, 5, 5, 5, 1, 3, 1, 3, 1, 3, 1, 1, 32, 33, 34, 17, 4, 37, 9, 9, 2, 5, 2, 5, 5, 11, 5, 5, 1, 3, 6, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 64, 65, 66, 33, 68, 69, 17, 17, 4, 9, 18, 37, 9, 19, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly increasing runs of the n-th composition in standard order.
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374768, counted by A374632.
Positions of elements of A272919 are A374633, counted by A374631.
Ranks of rows of A374629.
The opposite version is A375124.
The strict version is A375125.
The strict opposite version is A375126.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-sum transformation is A353847.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],LessEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124766(n).
A070939(a(n)) = A374630(n) for n > 0.
A065120(a(n)) = A065120(n).

A382876 Number of ways to permute the prime indices of n so that the run-sums are all different.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 0, 1, 2, 0, 1, 2, 6, 1, 2, 2, 6, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
A run in a sequence is a constant consecutive subsequence. The run-sums of a sequence are obtained by splitting it into maximal runs and taking their sums. See A353932 for run-sums of standard compositions.

Examples

			For n = 12, none of the permutations (1,1,2), (1,2,1), (2,1,1) has distinct run-sums, so a(12) = 0.
The prime indices of 36 are {1,1,2,2}, and we have permutations: (1,1,2,2), (2,2,1,1), so a(36) = 2.
For n = 90 we have:
  (1,2,2,3)
  (1,3,2,2)
  (2,2,1,3)
  (2,2,3,1)
  (3,1,2,2)
  (3,2,2,1)
So a(90) = 6. The 6 missing permutations are: (1,2,3,2), (2,1,2,3), (2,1,3,2), (2,3,1,2), (2,3,2,1), (3,2,1,2).
		

Crossrefs

Positions of 1 are A000961.
Compositions of this type are counted by A353850, ranked by A353852.
Positions of 0 appear to be A381636, for equal run-sums A383100.
For run-lengths instead of sums we have A382771, equal A382857 (zeros A382879).
For equal instead of distinct run-sums we have A382877.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A304442 counts compositions with equal run-sums, complement A382076.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A353837 counts partitions with distinct run-sums, ranks A353838.
A353847 gives composition run-sum transformation, for partitions A353832.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Permutations[PrimePi /@ Join@@ConstantArray@@@FactorInteger[n]], UnsameQ@@Total/@Split[#]&]],{n,100}]
Previous Showing 11-20 of 57 results. Next