cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A355732 Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).

Original entry on oeis.org

1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     53: {16}
     21: {2,4}
    311: {64}
     27: {2,2,2}
     49: {4,4}
    159: {2,16}
   8161: {1024}
     63: {2,2,4}
For example, the choices for a(12) = 63 are:
  (1,1,1)  (1,2,2)  (2,1,4)
  (1,1,2)  (1,2,4)  (2,2,1)
  (1,1,4)  (2,1,1)  (2,2,2)
  (1,2,1)  (2,1,2)  (2,2,4)
		

Crossrefs

Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Times@@Length/@Divisors/@primeMS[n],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A368110 Numbers of which it is possible to choose a different divisor of each prime index.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is no sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, there is no divisor of k in A370348. - Robert Israel, Feb 15 2024

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  30: {1,2,3}
		

Crossrefs

Partitions of this type are counted by A239312, complement A370320.
Positions of nonzero terms in A355739.
Complement of A355740.
For just prime divisors we have A368100, complement A355529 (odd A355535).
A000005 counts divisors.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Maple
    filter:= proc(n) uses numtheory, GraphTheory; local B,S,F,D,E,G,t,d;
      F:= ifactors(n)[2];
      F:= map(t -> [pi(t[1]),t[2]], F);
      D:= `union`(seq(divisors(t[1]), t = F));
      F:= map(proc(t) local i;seq([t[1],i],i=1..t[2]) end proc,F);
      if nops(D) < nops(F) then return false fi;
      E:= {seq(seq({t,d},d=divisors(t[1])),t = F)};
      S:= map(t -> convert(t,name), [op(F),op(D)]);
      E:= map(e -> map(convert,e,name),E);
      G:= Graph(S,E);
      B:= BipartiteMatching(G);
      B[1] = nops(F);
    end proc:
    select(filter, [$1..100]); # Robert Israel, Feb 15 2024
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]!={}&]

Formula

Heinz numbers of the partitions counted by A239312.

A355745 Number of ways to choose a prime factor of each prime index of n (with multiplicity, in weakly increasing order) such that the result is also weakly increasing.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355741 and A355744 at n = 35.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1469 are {6,30}, and there are five valid choices: (2,2), (2,3), (2,5), (3,3), (3,5), so a(1469) = 5.
		

Crossrefs

Allowing all divisors gives A355735, firsts A355736, reverse A355749.
Not requiring an increasing sequence gives A355741.
Choosing a multiset instead of sequence gives A355744.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 chooses of a divisor of each prime index, firsts A355732.
A355733 chooses a multiset of divisors, firsts A355734.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Union/@primeMS/@primeMS[n]],LessEqual@@#&]],{n,100}]

A355733 Number of multisets that can be obtained by choosing a divisor of each prime index of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 7, 2, 2, 5, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 7, 4, 2, 4, 6, 2, 7, 1, 7, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 7, 4, 2, 5, 2, 2, 5, 4, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 multisets are: {1,1}, {1,2}, {1,3}, {2,3}.
The a(18) = 3 multisets are: {1,1,1}, {1,1,2}, {1,2,2}.
		

Crossrefs

Counting all choices of divisors gives A355731, firsts A355732.
Positions of first appearances are A355734.
Choosing weakly increasing divisors gives A355735, firsts A355736.
Choosing only prime divisors gives A355744.
The version choosing a divisor of each number from 1 to n is A355747.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,100}]

A370592 Number of integer partitions of n such that it is possible to choose a different prime factor of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 5, 6, 7, 9, 11, 12, 12, 16, 18, 22, 26, 29, 29, 37, 41, 49, 55, 61, 68, 72, 88, 98, 110, 120, 135, 146, 166, 190, 209, 227, 252, 277, 309, 346, 379, 413, 447, 500, 548, 606, 665, 727, 785, 857, 949, 1033, 1132, 1228, 1328, 1440
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The partition (10,6,4) has choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(10) = 4 partitions:
  ()  .  (2)  (3)  (4)  (5)    (6)  (7)    (8)    (9)    (10)
                        (3,2)       (4,3)  (5,3)  (5,4)  (6,4)
                                    (5,2)  (6,2)  (6,3)  (7,3)
                                                  (7,2)  (5,3,2)
The a(0) = 1 through a(17) = 12 partitions (0 = {}, A..H = 10..17):
  0  .  2  3  4  5   6  7   8   9   A    B   C    D    E    F    G    H
                 32     43  53  54  64   65  66   76   86   87   97   98
                        52  62  63  73   74  75   85   95   96   A6   A7
                                72  532  83  A2   94   A4   A5   B5   B6
                                         92  543  A3   B3   B4   C4   C5
                                             732  B2   C2   C3   D3   D4
                                                  652  653  D2   E2   E3
                                                       743  654  754  F2
                                                       752  753  763  665
                                                            762  853  764
                                                            A32  952  A43
                                                                 B32  7532
		

Crossrefs

The version for divisors instead of factors is A239312, ranks A368110.
The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
These partitions have ranks A368100.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370593, ranks A355529.
For a unique choice we have A370594, ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,30}]

Formula

a(n) = A000041(n) - A370593(n).

A368109 Number of ways to choose a binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 3, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

First differs from A367912 at a(52) = 8, A367912(52) = 7.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
Run-lengths are all 4 or 8.

Examples

			The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4.
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8.
		

Crossrefs

All entries appear to belong to A003586.
Positions of ones are A253317.
The version for prime indices is A355741, for multisets A355744.
Choosing a multiset (not sequence) gives A367912, firsts A367913.
Positions of first appearances are A368111, sorted A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Tuples[bpe/@bpe[n]]], {n,0,100}]

Formula

a(n) = Product_{k in A048793(n)} A000120(k).

A370593 Number of integer partitions of n such that it is not possible to choose a different prime factor of each part.

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 10, 12, 19, 26, 38, 51, 71, 94, 126, 165, 219, 285, 369, 472, 605, 766, 973, 1226, 1538, 1917, 2387, 2955, 3657, 4497, 5532, 6754, 8251, 10033, 12190, 14748, 17831, 21471, 25825, 30976, 37111, 44331, 52897, 62952, 74829, 88755, 105145, 124307
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The a(0) = 0 through a(7) = 12 partitions:
  .  (1)  (11)  (21)   (22)    (41)     (33)      (61)
                (111)  (31)    (221)    (42)      (322)
                       (211)   (311)    (51)      (331)
                       (1111)  (2111)   (222)     (421)
                               (11111)  (321)     (511)
                                        (411)     (2221)
                                        (2211)    (3211)
                                        (3111)    (4111)
                                        (21111)   (22111)
                                        (111111)  (31111)
                                                  (211111)
                                                  (1111111)
		

Crossrefs

The complement for divisors instead of factors is A239312, ranks A368110.
These partitions have ranks A355529, complement A368100.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370592.
For a unique choice we have A370594, ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Formula

a(n) = A000041(n) - A370592(n).

A367901 Number of sets of subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

1, 2, 9, 195, 63765, 4294780073, 18446744073639513336, 340282366920938463463374607341656713953, 115792089237316195423570985008687907853269984665640564039457583610129753447747
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 9 sets of sets:
  {{}}
  {{},{1}}
  {{},{2}}
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{1},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

The version for simple graphs is A367867, covering A367868.
The complement is counted by A367902, no singletons A367770, ranks A367906.
The version without empty edges is A367903, ranks A367907.
For a unique choice (instead of none) we have A367904, ranks A367908.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,3}]

Formula

a(n) = 2^2^n - A367902(n). - Christian Sievers, Aug 01 2024

Extensions

a(5)-a(8) from Christian Sievers, Aug 01 2024

A355737 Number of ways to choose a sequence of divisors, one of each prime index of n (with multiplicity), such that the result has no common divisor > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 4, 1, 1, 4, 1, 2, 4, 2, 1, 2, 3, 4, 7, 3, 1, 4, 1, 1, 4, 2, 6, 4, 1, 4, 6, 2, 1, 6, 1, 2, 8, 3, 1, 2, 5, 4, 4, 4, 1, 8, 4, 3, 5, 4, 1, 4, 1, 2, 10, 1, 6, 4, 1, 2, 6, 6, 1, 4, 1, 6, 8, 4, 6, 8, 1, 2, 15, 2, 1, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(18) = 4 choices:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111
               12          12  13     112     12  13           112
                           21                 14  21           121
                                                  23           122
		

Crossrefs

Dominated by A355731, firsts A355732, primes A355741, prime-powers A355742.
For weakly increasing instead of coprime we have A355735, primes A355745.
Positions of first appearances are A355738.
For strict instead of coprime we have A355739, zeros A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],GCD@@#==1&]],{n,100}]

A370808 Greatest number of multisets that can be obtained by choosing a divisor of each part of an integer partition of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 17, 19, 23, 29, 30, 39, 41, 51, 58, 66, 78, 82, 102, 110, 132, 144, 162, 186, 210, 228, 260, 296, 328, 366, 412, 462, 512, 560, 638, 692, 764, 860, 924, 1028, 1122, 1276, 1406, 1528, 1721, 1898, 2056, 2318, 2506, 2812, 3020, 3442
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partitions of 5 we have the following choices:
      (5): {{1},{5}}
     (41): {{1,1},{1,2},{1,4}}
     (32): {{1,1},{1,2},{1,3},{2,3}}
    (311): {{1,1,1},{1,1,3}}
    (221): {{1,1,1},{1,1,2},{1,2,2}}
   (2111): {{1,1,1,1},{1,1,1,2}}
  (11111): {{1,1,1,1,1}}
So a(5) = 4.
		

Crossrefs

For just prime factors we have A370809.
The version for factorizations is A370816, for just prime factors A370817.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355733 counts choices of divisors of prime indicec.
A370320 counts non-condensed partitions, ranks A355740.
A370592 counts factor-choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024
Previous Showing 11-20 of 92 results. Next