A370594
Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
Offset: 0
The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(12) = 5 partitions:
() . (2) (3) (4) (5) . (7) (8) (9) (6,4) (11) (6,6)
(3,2) (4,3) (5,3) (5,4) (7,3) (7,4) (7,5)
(5,2) (6,2) (6,3) (5,3,2) (8,3) (10,2)
(7,2) (9,2) (5,4,3)
(7,3,2)
Maximal sets of this type are counted by
A370585.
For divisors instead of factors we have
A370595.
These partitions have ranks
A370647.
A355741 counts ways to choose a prime factor of each prime index.
-
Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,30}]
A355734
Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k.
Original entry on oeis.org
1, 3, 7, 13, 21, 35, 39, 89, 133, 105, 91, 195, 351, 285, 247, 333, 273, 481, 455, 555, 623, 801, 791, 741, 1359, 1157, 1281, 1335, 1365, 1443, 1977, 1729, 1967, 1869, 2109, 3185, 2373, 2769, 2639, 4361, 3367, 3653, 3885, 3471, 4613, 5883, 5187, 5551, 6327
Offset: 1
The terms together with their prime indices begin:
1: {}
3: {2}
7: {4}
13: {6}
21: {2,4}
35: {3,4}
39: {2,6}
89: {24}
133: {4,8}
105: {2,3,4}
91: {4,6}
195: {2,3,6}
351: {2,2,2,6}
For example, the choices for a(12) = 195 are:
{1,1,1} {1,2,2} {1,3,6}
{1,1,2} {1,2,3} {2,2,3}
{1,1,3} {1,2,6} {2,3,3}
{1,1,6} {1,3,3} {2,3,6}
Positions of first appearances in
A355733.
A003963 multiplies together the prime indices of n.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}];
Table[Position[az,k][[1,1]],{k,mnrm[az]}]
A355535
Odd numbers of which it is not possible to choose a different prime factor of each prime index.
Original entry on oeis.org
9, 21, 25, 27, 45, 49, 57, 63, 75, 81, 99, 105, 115, 117, 121, 125, 133, 135, 147, 153, 159, 171, 175, 189, 195, 207, 225, 231, 243, 245, 261, 273, 275, 279, 285, 289, 297, 315, 325, 333, 343, 345, 351, 357, 361, 363, 369, 371, 375, 387, 393, 399, 405, 423
Offset: 1
The terms together with their prime indices begin:
9: {2,2}
21: {2,4}
25: {3,3}
27: {2,2,2}
45: {2,2,3}
49: {4,4}
57: {2,8}
63: {2,2,4}
75: {2,3,3}
81: {2,2,2,2}
99: {2,2,5}
105: {2,3,4}
For example, the prime indices of 897 are {2,6,9}, of which we can choose prime factors in two ways: (2,2,3) or (2,3,3); but neither of these has all distinct elements, so 897 is in the sequence.
The version for all divisors including evens is
A355740, zeros of
A355739.
Choices of a prime factor of each prime index:
A355741, unordered
A355744.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A120383 lists numbers divisible by all of their prime indices.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&]
A370595
Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0
The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13):
1 . 21 22 . 33 322 71 441 55 533 B1 553 77 933
31 51 421 332 522 442 722 444 733 D1 B22
321 422 531 721 731 552 751 B21 B31
521 4321 4322 4332 931 4433 4443
5321 4431 4432 5441 5442
5322 5332 6332 5532
5421 5422 7322 6621
6321 6322 7421 7332
7321 7422
7521
8421
9321
54321
The version for prime factors (not all divisors) is
A370594, ranks
A370647.
These partitions have ranks
A370810.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370592 counts partitions with choosable prime factors, ranks
A368100.
A370593 counts partitions without choosable prime factors, ranks
A355529.
A370804 counts non-condensed partitions with no ones, complement
A370805.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]
A371165
Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).
Original entry on oeis.org
3, 5, 11, 17, 26, 31, 35, 38, 39, 41, 49, 57, 58, 59, 65, 67, 69, 77, 83, 86, 87, 94, 109, 119, 127, 129, 133, 146, 148, 157, 158, 179, 191, 202, 206, 211, 217, 235, 237, 241, 244, 253, 274, 277, 278, 283, 284, 287, 291, 298, 303, 319, 326, 331, 333, 334, 353
Offset: 1
The terms together with their prime indices begin:
3: {2} 67: {19} 158: {1,22}
5: {3} 69: {2,9} 179: {41}
11: {5} 77: {4,5} 191: {43}
17: {7} 83: {23} 202: {1,26}
26: {1,6} 86: {1,14} 206: {1,27}
31: {11} 87: {2,10} 211: {47}
35: {3,4} 94: {1,15} 217: {4,11}
38: {1,8} 109: {29} 235: {3,15}
39: {2,6} 119: {4,7} 237: {2,22}
41: {13} 127: {31} 241: {53}
49: {4,4} 129: {2,14} 244: {1,1,18}
57: {2,8} 133: {4,8} 253: {5,9}
58: {1,10} 146: {1,21} 274: {1,33}
59: {17} 148: {1,1,12} 277: {59}
65: {3,6} 157: {37} 278: {1,34}
For prime factors instead of divisors on both sides we get
A319899.
For prime factors on LHS we get
A370802, for distinct prime factors
A371177.
For (greater than) instead of (equal) we get
A371166.
For (less than) instead of (equal) we get
A371167.
Partitions of this type are counted by
A371172.
A001221 counts distinct prime factors.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
-
Select[Range[100],Length[Divisors[#]] == Length[Union@@Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
A371168
Positive integers with fewer prime factors (A001222) than distinct divisors of prime indices (A370820).
Original entry on oeis.org
3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115
Offset: 1
The prime indices of 105 are {2,3,4}, and there are 3 prime factors (3,5,7) and 4 distinct divisors of prime indices (1,2,3,4), so 105 is in the sequence.
The terms together with their prime indices begin:
3: {2} 35: {3,4} 59: {17} 86: {1,14}
5: {3} 37: {12} 61: {18} 87: {2,10}
7: {4} 38: {1,8} 65: {3,6} 89: {24}
11: {5} 39: {2,6} 67: {19} 91: {4,6}
13: {6} 41: {13} 69: {2,9} 93: {2,11}
14: {1,4} 43: {14} 70: {1,3,4} 94: {1,15}
15: {2,3} 46: {1,9} 71: {20} 95: {3,8}
17: {7} 47: {15} 73: {21} 97: {25}
19: {8} 49: {4,4} 74: {1,12} 101: {26}
21: {2,4} 51: {2,7} 76: {1,1,8} 103: {27}
23: {9} 52: {1,1,6} 77: {4,5} 105: {2,3,4}
26: {1,6} 53: {16} 78: {1,2,6} 106: {1,16}
29: {10} 55: {3,5} 79: {22} 107: {28}
31: {11} 57: {2,8} 83: {23} 109: {29}
33: {2,5} 58: {1,10} 85: {3,7} 111: {2,12}
For divisors instead of prime factors on the LHS we get
A371166.
The complement is counted by
A371169.
Partitions of this type are counted by
A371173.
A001221 counts distinct prime factors.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A371173
Number of integer partitions of n with fewer parts than distinct divisors of parts.
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 2, 4, 6, 7, 11, 11, 17, 20, 26, 34, 44, 56, 67, 84, 102, 131, 156, 195, 232, 283, 346, 411, 506, 598, 721, 855, 1025, 1204, 1448, 1689, 2018, 2363, 2796, 3265, 3840, 4489, 5242, 6104, 7106, 8280, 9595, 11143, 12862, 14926, 17197, 19862, 22841
Offset: 0
The partition (4,3,2) has 3 parts {2,3,4} and 4 distinct divisors of parts {1,2,3,4}, so is counted under a(9).
The a(2) = 1 through a(10) = 11 partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,2) (4,2) (4,3) (4,4) (5,4) (6,4)
(4,1) (5,2) (5,3) (6,3) (7,3)
(6,1) (6,2) (7,2) (8,2)
(4,3,1) (8,1) (9,1)
(6,1,1) (4,3,2) (4,3,3)
(6,2,1) (5,3,2)
(5,4,1)
(6,2,2)
(6,3,1)
(8,1,1)
For submultisets instead of parts on the LHS we get ranks
A371166.
These partitions are ranked by
A371168.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
-
Table[Length[Select[IntegerPartitions[n],Length[#] < Length[Union@@Divisors/@#]&]],{n,0,30}]
A370587
Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).
Original entry on oeis.org
0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0
The a(0) = 0 through a(5) = 10 subsets:
. {1} {1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,4} {1,2,5}
{1,2,4} {1,3,5}
{1,3,4} {1,4,5}
{2,3,4} {2,4,5}
{1,2,3,4} {1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A370586.
For a unique choice we have
A370588.
For binary indices instead of factors we have
A370639, complement
A370589.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
A370585 counts maximal choosable sets.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
A370810
Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n.
Original entry on oeis.org
1, 2, 6, 9, 10, 22, 25, 30, 34, 42, 45, 62, 63, 66, 75, 82, 98, 99, 102, 110, 118, 121, 134, 147, 153, 166, 170, 186, 210, 218, 230, 246, 254, 275, 279, 289, 310, 314, 315, 330, 343, 354, 358, 363, 369, 374, 382, 390, 402, 410, 422, 425, 462, 482, 490, 495
Offset: 1
The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
22: {1,5}
25: {3,3}
30: {1,2,3}
34: {1,7}
42: {1,2,4}
45: {2,2,3}
62: {1,11}
63: {2,2,4}
66: {1,2,5}
75: {2,3,3}
82: {1,13}
98: {1,4,4}
99: {2,2,5}
102: {1,2,7}
110: {1,3,5}
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&]
A368101
Numbers of which there is exactly one way to choose a different prime factor of each prime index.
Original entry on oeis.org
1, 3, 5, 11, 15, 17, 31, 33, 39, 41, 51, 55, 59, 65, 67, 83, 85, 87, 93, 109, 111, 123, 127, 129, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 213, 235, 237, 241, 249, 255, 267, 277, 283, 295, 303, 305, 319, 321, 327, 331, 335, 341, 353, 365, 367, 381
Offset: 1
The prime indices of 2795 are {3,6,14}, with prime factors {{3},{2,3},{2,7}}, and the only choice with different terms is {3,2,7}, so 2795 is in the sequence.
The terms together with their prime indices of prime indices begin:
1: {}
3: {{1}}
5: {{2}}
11: {{3}}
15: {{1},{2}}
17: {{4}}
31: {{5}}
33: {{1},{3}}
39: {{1},{1,2}}
41: {{6}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
65: {{2},{1,2}}
67: {{8}}
83: {{9}}
85: {{2},{4}}
87: {{1},{1,3}}
93: {{1},{5}}
109: {{10}}
111: {{1},{1,1,2}}
The version for binary indices is
A367908, positions of ones in
A367905.
For any number of choices we have
A368100.
For a unique set instead of sequence we have
A370647, counted by
A370594.
A355741 chooses a prime factor of each prime index, multisets
A355744.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100], Length[Select[Tuples[prix/@prix[#]], UnsameQ@@#&]]==1&]
Comments