A355739 Number of ways to choose a sequence of all different divisors, one of each prime index of n (with multiplicity).
1, 1, 2, 0, 2, 1, 3, 0, 2, 1, 2, 0, 4, 2, 3, 0, 2, 0, 4, 0, 4, 1, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 3, 1, 5, 0, 6, 3, 6, 0, 2, 1, 4, 0, 2, 2, 4, 0, 6, 0, 3, 0, 5, 0, 3, 0, 6, 3, 2, 0, 6, 1, 2, 0, 6, 1, 2, 0, 5, 2, 6, 0, 4, 5, 2, 0, 5, 2, 4, 0, 0, 1, 2, 0, 3, 3, 6
Offset: 1
Keywords
Examples
The a(49) = 6 ways are: (1,2), (1,4), (2,1), (2,4), (4,1), (4,2). The a(182) = 5 ways are: (1,2,3), (1,2,6), (1,4,2), (1,4,3), (1,4,6). The a(546) = 2 ways are: (1,2,4,3), (1,2,4,6).
Links
- Wikipedia, Cartesian product.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[Tuples[Divisors/@primeMS[n]],UnsameQ@@#&]],{n,100}]
Comments