A006195
Reversion of Jacobi theta_3.
Original entry on oeis.org
1, -2, 8, -40, 222, -1316, 8160, -52272, 343220, -2297682, 15623760, -107611608, 749209832, -5264005060, 37277153920, -265788870480, 1906489923022, -13747860118724, 99606357848920, -724732875917064, 5293303253527704, -38795196044205056
Offset: 0
-
# Using function CompInv from A357588.
CompInv(22, n -> if n = 1 then 1 elif issqr(n-1) then 2 else 0 fi); # Peter Luschny, Oct 05 2022
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^k)/(1 - x^k*A[x]^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * (-1)^Range[0, nmax] (* Vaclav Kotesovec, Sep 27 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-1, r*s] == 2*s*QPochhammer[r*s], (2* QPochhammer[r*s]*(-Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])) / Log[r*s] + r*(Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
-
N=66; x='x+O('x^N); /* that many terms */
Vec(serreverse(x*sum(n=-N,N,x^(n^2)))) /* show terms */ /* Joerg Arndt, May 25 2011 */
A059372
Revert transform of factorials n! (n >= 1).
Original entry on oeis.org
1, -2, 2, -4, -4, -48, -336, -2928, -28144, -298528, -3454432, -43286528, -583835648, -8433987584, -129941213184, -2127349165824, -36889047574272, -675548628690432, -13030733384956416, -264111424634864640
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
- Vaclav Kotesovec, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
- M. H. Albert, M. D. Atkinson and M. Klazar, The Enumeration of Simple Permutations, J. Integer Seqs., Vol. 6, 2003.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Blockwise simple permutations, arXiv:2303.13115 [math.CO], 2023.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- Index entries for reversions of series
-
# From Transforms, see the footer of the page.
REVERT([seq(k!, k=1..20)]); # Peter Luschny, May 01 2021
# Using function CompInv from A357588.
CompInv(10, n -> factorial(n)); # Peter Luschny, Oct 09 2022
-
nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Inverse[tnk][[All, 1]] (* Jean-François Alcover, Jul 13 2016 *)
A007311
Reversion of o.g.f. for Bell numbers (A000110) omitting a(0)=1.
Original entry on oeis.org
1, -2, 3, -5, 7, -14, 11, -66, -127, -992, -5029, -30899, -193321, -1285300, -8942561, -65113125, -494605857, -3911658640, -32145949441, -274036507173, -2419502677445, -22093077575496, -208364964369913, -2027216779571754, -20323053380033763, -209715614081160850
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
read transforms; A := series(exp(exp(x)-1),x,60); SERIESTOLISTMULT(%); subsop(1=NULL,%); REVERT(%);
# Alternative, using function CompInv from A357588:
CompInv(26, n -> combinat:-bell(n)); # Peter Luschny, Oct 05 2022
-
a(n)=if(n<1,0,polcoeff(serreverse(-1+serlaplace(exp(exp(x+x*O(x^n))-1))),n))
Signs corrected Dec 24 2001
A050397
Reversion of sequence of involutions (A000085).
Original entry on oeis.org
1, -2, 4, -10, 30, -104, 392, -1568, 6520, -27976, 122944, -551680, 2518912, -11684000, 54957216, -261897024, 1263216192, -6164172608, 30416619200, -151750104800, 765364073120, -3902783995520, 20123276097920
Offset: 1
-
# Using function CompInv from A357588.
CompInv(23, n -> simplify(hypergeom([-n/2, (1-n)/2], [], 2))); # Peter Luschny, Oct 05 2022
-
seq(n)=Vec(serreverse(serlaplace(-1 + exp(x+x^2/2 + O(x*x^n))))) \\ Andrew Howroyd, May 06 2023
A007316
Reversion of g.f. for Euler numbers A000111(n-1).
Original entry on oeis.org
1, -1, 1, -2, 3, -9, 9, -71, -96, -1325, -6843, -54922, -417975, -3586117, -32531983, -316599861, -3274076017, -35914014266, -416386323306, -5088908019824, -65392831090975, -881473287321301, -12437647407521019, -183345613125389337
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
# Using function CompInv from A357588.
CompInv(24, n -> if n=1 then 1 else 2^(n-1)*abs(euler(n-1, 1/2) + euler(n-1, 1)) fi); # Peter Luschny, Oct 05 2022
A092413
Coefficient of x^n in solution of x = y + y^2 + y^4 + y^8 + ...
Original entry on oeis.org
1, -1, 2, -6, 20, -70, 256, -970, 3772, -14960, 60280, -246090, 1015700, -4231216, 17767456, -75126078, 319588340, -1366846548, 5873832384, -25350152100, 109828012448, -477486940848, 2082520454864, -9109146150050, 39950535931956
Offset: 1
-
# Using function CompInv from A357588.
CompInv(25, n -> if 2^ilog2(n) = n then 1 else 0 fi); # Peter Luschny, Oct 05 2022
-
serreverse(sum(k=0,8,x^(2^k))+O(x^257))
A249512
Expansion of 1/(1-x*sqrt(4*x^2+1)-2*x^2).
Original entry on oeis.org
1, 1, 3, 7, 15, 33, 75, 169, 375, 835, 1875, 4203, 9375, 20931, 46875, 104919, 234375, 523737, 1171875, 2621545, 5859375, 13098001, 29296875, 65523597, 146484375, 327500413, 732421875, 1637918089
Offset: 0
-
# Using function CompInv from A357588.
1, CompInv(27, n -> simplify(GegenbauerC(n-1, 1-n, 3/2))); # Peter Luschny, Oct 05 2022
-
CoefficientList[Series[1/(1-x*Sqrt[4*x^2+1]-2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 31 2014 *)
-
a(n) := if n=0 then 1 else sum(k*4^(n-k)*binomial(n/2,n-k),k,1,n)/n;
-
def a(n):
if is_odd(n):
return simplify((4^(n-1)*binomial(n/2, n-1)*hypergeometric([2, 1-n], [2-n/2], -1/4))/n)
return 3*5^(n//2-1) if n>0 else 1
[a(n) for n in (0..27)] # Peter Luschny, Oct 31 2014
Comments