cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A006195 Reversion of Jacobi theta_3.

Original entry on oeis.org

1, -2, 8, -40, 222, -1316, 8160, -52272, 343220, -2297682, 15623760, -107611608, 749209832, -5264005060, 37277153920, -265788870480, 1906489923022, -13747860118724, 99606357848920, -724732875917064, 5293303253527704, -38795196044205056
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(22, n -> if n = 1 then 1 elif issqr(n-1) then 2 else 0 fi); # Peter Luschny, Oct 05 2022
  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^k)/(1 - x^k*A[x]^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * (-1)^Range[0, nmax] (* Vaclav Kotesovec, Sep 27 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-1, r*s] == 2*s*QPochhammer[r*s], (2* QPochhammer[r*s]*(-Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])) / Log[r*s] + r*(Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    Vec(serreverse(x*sum(n=-N,N,x^(n^2)))) /* show terms */ /* Joerg Arndt, May 25 2011 */

Formula

REVERT(A000122).
From Vaclav Kotesovec, Sep 27 2023: (Start)
G.f. A(x) satisfies A(x) = Product_{k>=1} (1 + (-x)^k*A(x)^k)/(1 - (-x)^k*A(x)^k).
a(n) ~ (-1)^n * c * d^n / n^(3/2), where d = 7.86298339570590526151934790995382716105758424871057843176888470144337... and c = 0.617020565581840591336246430220953133238702598666548444780767269...
(End)

Extensions

Signs corrected by N. J. A. Sloane, Dec 24 2001

A059372 Revert transform of factorials n! (n >= 1).

Original entry on oeis.org

1, -2, 2, -4, -4, -48, -336, -2928, -28144, -298528, -3454432, -43286528, -583835648, -8433987584, -129941213184, -2127349165824, -36889047574272, -675548628690432, -13030733384956416, -264111424634864640
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

First diagonal of triangle in A059370.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.

Crossrefs

Programs

  • Maple
    # From Transforms, see the footer of the page.
    REVERT([seq(k!, k=1..20)]); # Peter Luschny, May 01 2021
    # Using function CompInv from A357588.
    CompInv(10, n -> factorial(n)); # Peter Luschny, Oct 09 2022
  • Mathematica
    nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Inverse[tnk][[All, 1]] (* Jean-François Alcover, Jul 13 2016 *)

Formula

a(n) ~ -exp(-2) * n! * (1 - 4/n + 2/n^2 - 34/(3*n^3) - 296/(3*n^4) - 4818/(5*n^5) - 508532/(45*n^6)). - Vaclav Kotesovec, Aug 04 2015
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k! * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020

Extensions

More terms from Vladeta Jovovic, Mar 05 2001
Definition refined by Georg Fischer, May 01 2021

A007311 Reversion of o.g.f. for Bell numbers (A000110) omitting a(0)=1.

Original entry on oeis.org

1, -2, 3, -5, 7, -14, 11, -66, -127, -992, -5029, -30899, -193321, -1285300, -8942561, -65113125, -494605857, -3911658640, -32145949441, -274036507173, -2419502677445, -22093077575496, -208364964369913, -2027216779571754, -20323053380033763, -209715614081160850
Offset: 1

Views

Author

Keywords

Comments

As the definition says, this entry deliberately omits the zero-th term 1. - N. J. A. Sloane, Jun 16 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000110.

Programs

  • Maple
    read transforms; A := series(exp(exp(x)-1),x,60); SERIESTOLISTMULT(%); subsop(1=NULL,%); REVERT(%);
    # Alternative, using function CompInv from A357588:
    CompInv(26, n -> combinat:-bell(n)); # Peter Luschny, Oct 05 2022
  • PARI
    a(n)=if(n<1,0,polcoeff(serreverse(-1+serlaplace(exp(exp(x+x*O(x^n))-1))),n))

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} Bell(k) * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020

Extensions

Signs corrected Dec 24 2001

A050397 Reversion of sequence of involutions (A000085).

Original entry on oeis.org

1, -2, 4, -10, 30, -104, 392, -1568, 6520, -27976, 122944, -551680, 2518912, -11684000, 54957216, -261897024, 1263216192, -6164172608, 30416619200, -151750104800, 765364073120, -3902783995520, 20123276097920
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(23, n -> simplify(hypergeom([-n/2, (1-n)/2], [], 2))); # Peter Luschny, Oct 05 2022
  • PARI
    seq(n)=Vec(serreverse(serlaplace(-1 + exp(x+x^2/2 + O(x*x^n))))) \\ Andrew Howroyd, May 06 2023

A007316 Reversion of g.f. for Euler numbers A000111(n-1).

Original entry on oeis.org

1, -1, 1, -2, 3, -9, 9, -71, -96, -1325, -6843, -54922, -417975, -3586117, -32531983, -316599861, -3274076017, -35914014266, -416386323306, -5088908019824, -65392831090975, -881473287321301, -12437647407521019, -183345613125389337
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111.

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(24, n -> if n=1 then 1 else 2^(n-1)*abs(euler(n-1, 1/2) + euler(n-1, 1)) fi); # Peter Luschny, Oct 05 2022

Extensions

Extended with signs by Christian G. Bower, Feb 15 1999
Signs and a(23) and a(24) corrected by Sean A. Irvine, Dec 08 2017

A092413 Coefficient of x^n in solution of x = y + y^2 + y^4 + y^8 + ...

Original entry on oeis.org

1, -1, 2, -6, 20, -70, 256, -970, 3772, -14960, 60280, -246090, 1015700, -4231216, 17767456, -75126078, 319588340, -1366846548, 5873832384, -25350152100, 109828012448, -477486940848, 2082520454864, -9109146150050, 39950535931956
Offset: 1

Views

Author

Ralf Stephan, Mar 22 2004

Keywords

Comments

Reversion of Fredholm-Rueppel sequence (A036987) shifted right.

Crossrefs

Cf. A049140.

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(25, n -> if 2^ilog2(n) = n then 1 else 0 fi); # Peter Luschny, Oct 05 2022
  • PARI
    serreverse(sum(k=0,8,x^(2^k))+O(x^257))

A249512 Expansion of 1/(1-x*sqrt(4*x^2+1)-2*x^2).

Original entry on oeis.org

1, 1, 3, 7, 15, 33, 75, 169, 375, 835, 1875, 4203, 9375, 20931, 46875, 104919, 234375, 523737, 1171875, 2621545, 5859375, 13098001, 29296875, 65523597, 146484375, 327500413, 732421875, 1637918089
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 31 2014

Keywords

Programs

  • Maple
    # Using function CompInv from A357588.
    1, CompInv(27, n -> simplify(GegenbauerC(n-1, 1-n, 3/2))); # Peter Luschny, Oct 05 2022
  • Mathematica
    CoefficientList[Series[1/(1-x*Sqrt[4*x^2+1]-2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 31 2014 *)
  • Maxima
    a(n) := if n=0 then 1  else sum(k*4^(n-k)*binomial(n/2,n-k),k,1,n)/n;
    
  • Sage
    def a(n):
        if is_odd(n):
            return simplify((4^(n-1)*binomial(n/2, n-1)*hypergeometric([2, 1-n], [2-n/2], -1/4))/n)
        return 3*5^(n//2-1) if n>0 else 1
    [a(n) for n in (0..27)] # Peter Luschny, Oct 31 2014

Formula

a(n) = sum(k = 1..n, k*4^(n-k)*binomial(n/2,n-k))/n, a(0)=1.
a(n) ~ 3 * 5^(n/2-1). - Vaclav Kotesovec, Oct 31 2014
a(n) = 3 * 5^(n/2-1) if n is even and n>0 else a(n) = ((4^(n-1)* binomial(n/2, n-1)*hypergeometric([2, 1-n],[2-n/2], -1/4))/n). - Peter Luschny, Oct 31 2014
D-finite with recurrence: (-n+1)*a(n) +(-n+2)*a(n-1) +(n+11)*a(n-2) +(n+10)*a(n-3) +20*(n-4)*a(n-4) +20*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
Previous Showing 11-17 of 17 results.