A363531
Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).
Original entry on oeis.org
1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
144: {1,1,1,1,2,2}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
672: {1,1,1,1,1,2,4}
1008: {1,1,1,1,2,2,4}
1350: {1,2,2,2,3,3}
2176: {1,1,1,1,1,1,1,7}
2250: {1,2,2,3,3,3}
2520: {1,1,1,2,2,3,4}
2673: {2,2,2,2,2,5}
3125: {3,3,3,3,3}
3969: {2,2,2,2,4,4}
4160: {1,1,1,1,1,1,3,6}
These partitions are counted by
A363526.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]
A363526
Number of integer partitions of n with reverse-weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0
The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
(1,1,1,1,1) (4,3,2,1) (6,4,4,1) (6,5,4,1) (8,6,6,1) (9,7,7,1)
(2,2,2,2,2) (6,5,2,2) (6,6,2,2) (8,7,4,2) (9,8,5,2)
(7,3,3,2) (7,4,3,2) (9,5,5,2) (9,9,3,3)
(3,3,3,3,3) (9,6,3,3) (10,6,6,2)
(10,4,4,3) (10,7,4,3)
(11,5,5,3)
(12,4,4,4)
Positions of terms with omega > 4 appear to be
A079998.
The version for compositions is
A231429.
The non-reverse version is
A363527.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]
A363527
Number of integer partitions of n with weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
(332221) (333221) (33333) (442222) (443222) (443331)
(4322111) (522222) (5322211) (4433111) (444222)
(71111111) (4332111) (55111111) (5332211) (533322)
(63111111) (63211111) (55211111) (4443111)
(63311111) (7222221)
(72221111) (55311111)
(64221111)
(A11111111)
The version for compositions is
A231429.
These partitions have ranks
A363531.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528,
A363532.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]
A363530
Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).
Original entry on oeis.org
1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
40: {1,1,1,3}
60: {1,1,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
210: {1,2,3,4}
243: {2,2,2,2,2}
294: {1,2,4,4}
351: {2,2,2,6}
550: {1,3,3,5}
585: {2,2,3,6}
770: {1,3,4,5}
819: {2,2,4,6}
These partitions are counted by
A363527.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]
A363525
Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1
The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
1 2 4 6 9 C E
11 22 33 333 66 77
1111 222 711 444 65111
111111 6111 921 73211
111111111 3333 2222222
7311 71111111
63111 11111111111111
222222
621111
111111111111
The case of equality (and reciprocal version) is
A000005.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A358137,
A359755,
A362558,
A362559,
A362560,
A363527.
-
Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A363528
Number of strict integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 2, 3, 9, 3, 4, 11, 4, 5, 16, 6, 8, 24, 8, 10, 31, 11, 14, 41, 18, 18, 59, 21, 27, 74, 30, 32, 100, 35, 43, 128, 54, 53, 173, 58, 78, 215, 81, 88, 294, 97, 123, 362, 150, 146, 469, 162, 221, 577
Offset: 1
The a(n) partitions for n = 1, 12, 15, 21, 24, 26:
(1) (12) (15) (21) (24) (26)
(9,2,1) (11,3,1) (15,5,1) (17,6,1) (11,8,4,2,1)
(9,3,2,1) (16,3,2) (18,4,2) (12,6,5,2,1)
(11,7,2,1) (12,9,2,1) (13,5,4,3,1)
(12,5,3,1) (13,7,3,1)
(10,5,3,2,1) (14,5,4,1)
(15,4,3,2)
(10,8,3,2,1)
(11,6,4,2,1)
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A008284,
A053632,
A067538,
A222855,
A222970,
A358137,
A359754,
A359755,
A362558,
A362559,
A362560.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Total[Accumulate[#]],Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A359757
Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.
Original entry on oeis.org
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
9: {2,2}
25: {3,3}
49: {4,4}
121: {5,5}
169: {6,6}
289: {7,7}
361: {8,8}
529: {9,9}
841: {10,10}
A053632 counts compositions by zero-based weighted sum.
A124757 = zero-based weighted sum of standard compositions, reverse
A231204.
-
nn=10;
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
seq=Table[wts[prix[n]],{n,2^nn}];
Table[Position[seq,k][[-1,1]],{k,nn}]
-
a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2),
my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n)));
} \\ Andrew Howroyd, Jan 21 2023
A359496
Nonnegative integers whose sum of positions of 1's in their binary expansion is less than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left.
Original entry on oeis.org
2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 72, 74, 76, 80, 81, 82, 84, 86, 88, 89, 90, 92, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106
Offset: 1
The initial terms, binary expansions, and positions of 1's are:
2: 10 ~ {2}
4: 100 ~ {3}
6: 110 ~ {2,3}
8: 1000 ~ {4}
10: 1010 ~ {2,4}
12: 1100 ~ {3,4}
13: 1101 ~ {1,3,4}
14: 1110 ~ {2,3,4}
16: 10000 ~ {5}
18: 10010 ~ {2,5}
20: 10100 ~ {3,5}
22: 10110 ~ {2,3,5}
24: 11000 ~ {4,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
28: 11100 ~ {3,4,5}
29: 11101 ~ {1,3,4,5}
30: 11110 ~ {2,3,4,5}
A230877 adds up positions of 1's in binary expansion, reverse
A029931.
A326669 lists numbers with integer mean position of a 1 in binary expansion.
A358194 counts partitions by sum of partial sums, compositions
A053632.
-
Select[Range[100],Total[Accumulate[IntegerDigits[#,2]]]>Total[Accumulate[Reverse[IntegerDigits[#,2]]]]&]
Comments