cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A387176 Numbers whose prime indices do not have choosable sets of strict integer partitions. Zeros of A387115.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 52, 54, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Aug 27 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Crossrefs

The complement for all partitions appears to be A276078, counted by A052335.
For all partitions we appear to have A276079, counted by A387134.
For divisors instead of strict partitions we have A355740, counted by A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873, see A387111.
For initial intervals instead of strict partitions we have A387113, counted by A387118.
These are the positions of 0 in A387115.
Partitions of this type are counted by A387137, complement A387178.
The complement is A387177.
The version for constant partitions is A387180, counted by A387329.
The complement for constant partitions is A387181, counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]

A358913 Number of finite sequences of distinct sets with total sum n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 28, 45, 86, 172, 344, 608, 1135, 2206, 4006, 7689, 13748, 25502, 47406, 86838, 157560, 286642, 522089, 941356, 1718622, 3079218, 5525805, 9902996, 17788396, 31742616, 56694704, 100720516, 178468026, 317019140, 560079704, 991061957
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 11 sequences of sets:
  ({1})  ({2})  ({3})      ({4})        ({5})
                ({1,2})    ({1,3})      ({1,4})
                ({1},{2})  ({1},{3})    ({2,3})
                ({2},{1})  ({3},{1})    ({1},{4})
                           ({1},{1,2})  ({2},{3})
                           ({1,2},{1})  ({3},{2})
                                        ({4},{1})
                                        ({1},{1,3})
                                        ({1,2},{2})
                                        ({1,3},{1})
                                        ({2},{1,2})
		

Crossrefs

The unordered version is A050342, non-strict A261049.
The case of strictly decreasing sums is A279785.
This is the distinct case of A304969.
The case of distinct sums is A336343, constant sums A279791.
This is the case of A358906 with strict partitions.
The version for compositions instead of strict partitions is A358907.
The case of twice-partitions is A358914.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330462(n,k) * k!.

A387177 Numbers whose prime indices have choosable sets of strict integer partitions. Positions of nonzero terms in A387115.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The prime indices of 50 are {1,3,3}, and {(1),(3),(2,1)} is a valid choice of distinct strict partitions, so 50 is in the sequence.
		

Crossrefs

The version for all partitions appears to be A276078, counted by A052335.
The complement for all partitions appears to be A276079, counted by A387134.
The complement for divisors is A355740, counted by A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
The version for divisors is A368110, counted by A239312.
The version for initial intervals is A387112, counted by A238873, see A387111.
The complement for initial intervals is A387113, counted by A387118.
These are the positions of nonzero terms in A387115.
The complement is A387176.
Partitions of this type are counted by A387178, complement A387137.
The complement for constant partitions is A387180, counted by A387329, see A387120.
The version for constant partitions is A387181, counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Select[Range[100],Select[Tuples[strptns/@prix[#]],UnsameQ@@#&]!={}&]

A387178 Number of integer partitions of n whose parts have choosable sets of strict integer partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

First differs from A052337 in having 745 instead of 746.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct strict integer partitions of each part.
Also the number of integer partitions of n with no part k whose multiplicity exceeds A000009(k).

Examples

			The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (3,3,1)  (7,1)    (8,1)
                                          (4,2,1)  (3,3,2)  (4,3,2)
                                                   (4,3,1)  (4,4,1)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
                                                            (3,3,2,1)
		

Crossrefs

For initial intervals instead of strict partitions we have A238873, ranks A387112.
For divisors instead of strict partitions we have A239312, ranks A368110.
The complement for divisors is A370320, ranks A355740.
For prime factors instead of strict partitions we have A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
The complement for initial intervals is A387118, ranks A387113.
The complement for all partitions is A387134, ranks A387577.
The complement is counted by A387137, ranks A387176.
These partitions are ranked by A387177.
For all partitions instead of just strict partitions we have A387328, ranks A387576.
The complement for constant partitions is A387329, ranks A387180.
For constant partitions instead of strict partitions we have A387330, ranks A387181.
A000041 counts integer partitions, strict A000009.
A358914 counts twice-partitions into distinct strict partitions.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]

A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 9, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 19, 3, 3, 3, 24, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 46, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 37, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 46, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2025

Keywords

Examples

			The a(36) = 24 choices:
  {{2,2,3,3}}  {{2},{2,3,3}}  {{2},{3},{2,3}}
  {{2,2,9}}    {{3},{2,2,3}}  {{2},{3},{6}}
  {{2,3,6}}    {{2,2},{3,3}}
  {{2,18}}     {{2},{2,9}}
  {{3,3,4}}    {{9},{2,2}}
  {{3,12}}     {{2},{3,6}}
  {{4,9}}      {{3},{2,6}}
  {{6,6}}      {{6},{2,3}}
  {{36}}       {{2},{18}}
               {{3},{3,4}}
               {{4},{3,3}}
               {{3},{12}}
               {{4},{9}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
This is the strict case of A050336.
For distinct strict blocks we have A050345.
For integer partitions we have A261049, strict case of A001970.
For strict blocks that are not necessarily distinct we have A296119.
Twice-partitions of this type are counted by A296122.
For normal multisets we have A317776, strict case of A255906.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, strict A296121, see A296118, A296120.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}]

A383308 Number of integer partitions of n that can be partitioned into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 10, 13, 15, 13, 31
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

Any strict partition can be partitioned into a single set, so we have a lower bound a(n) >= A000009(n).

Examples

			The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9).
The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)         (9)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)        (54)
             (111)  (31)    (41)     (42)      (52)       (53)        (63)
                    (1111)  (11111)  (51)      (61)       (62)        (72)
                                     (222)     (421)      (71)        (81)
                                     (321)     (1111111)  (431)       (333)
                                     (2211)               (521)       (432)
                                     (111111)             (2222)      (531)
                                                          (3311)      (621)
                                                          (11111111)  (3321)
                                                                      (32211)
                                                                      (222111)
                                                                      (111111111)
		

Crossrefs

Twice-partitions of this type (into sets with a common sum) are counted by A279788.
Multiset partitions of this type are ranked by A326534 /\ A302478.
For distinct instead of equal sums we have A381992, see also A382077.
The complement is counted by A381994, ranks A381719.
Partitions of prime indices of this type are counted by A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
For constant instead of strict blocks we have A383093, ranks A383014.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}]
Previous Showing 31-36 of 36 results.