cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A360953 Numbers whose right half of prime indices (exclusive) adds up to half the total sum of prime indices.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 48, 49, 63, 64, 70, 81, 108, 121, 154, 165, 169, 192, 256, 270, 273, 286, 289, 325, 361, 442, 529, 561, 567, 595, 625, 646, 675, 729, 741, 750, 768, 841, 874, 931, 961, 972, 1024, 1045, 1173, 1334, 1369, 1495, 1575, 1653, 1681, 1750
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2023

Keywords

Comments

Also numbers whose left half of prime indices (inclusive) adds up to half the total sum of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    30: {1,2,3}
    48: {1,1,1,1,2}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    70: {1,3,4}
    81: {2,2,2,2}
   108: {1,1,2,2,2}
For example, the prime indices of 1575 are {2,2,3,3,4}, with right half (exclusive) {3,4}, with sum 7, and the total sum of prime indices is 14, so 1575 is in the sequence.
		

Crossrefs

The left version is A056798.
The inclusive version is A056798.
These partitions are counted by A360674.
The left inclusive version is A360953 (this sequence).
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Select[Range[100],With[{w=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[Take[w,-Floor[Length[w]/2]]]==Total[w]/2]&]

A362618 Numbers whose prime factorization has either (1) odd length, or (2) equal middle parts.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is a prime factor of n.

Examples

			The prime factorization of 90 is 2*3*3*5, with middle parts (3,3), so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238478.
The complement (without 1) is A362617, counted by A238479.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362611 ranks modes in prime factorization, counted by A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],MemberQ[prifacs[#],Median[prifacs[#]]]&]

A360681 Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.

Original entry on oeis.org

1, 2, 6, 30, 42, 49, 60, 66, 70, 78, 84, 90, 102, 105, 114, 120, 126, 132, 138, 140, 150, 154, 156, 168, 174, 186, 198, 204, 210, 222, 228, 234, 246, 258, 264, 270, 276, 280, 282, 286, 294, 306, 308, 312, 315, 318, 330, 342, 348, 350, 354, 366, 372, 378, 385
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
   30: {1,2,3}
   42: {1,2,4}
   49: {4,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with median 1. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with median 1/2. So 2760 is not in the sequence.
		

Crossrefs

For distinct prime indices instead of 0-prepended differences: A360453.
For mean instead of median we have A360680.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
Multisets with integer median:
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[Length/@Split[prix[#]]] == Median[Differences[Prepend[prix[#],0]]]&]

A361391 Number of strict integer partitions of n with non-integer mean.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 4, 2, 4, 5, 11, 0, 17, 15, 13, 15, 37, 18, 53, 24, 48, 78, 103, 23, 111, 152, 143, 123, 255, 110, 339, 238, 372, 495, 377, 243, 759, 845, 873, 414, 1259, 842, 1609, 1383, 1225, 2281, 2589, 1285, 2827, 2518, 3904, 3836, 5119, 3715, 4630
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2023

Keywords

Comments

Are 1, 2, 4, 6, 12 the only zeros?

Examples

			The a(3) = 1 through a(11) = 11 partitions:
  {2,1}  .  {3,2}  .  {4,3}    {4,3,1}  {5,4}  {5,3,2}    {6,5}
            {4,1}     {5,2}    {5,2,1}  {6,3}  {5,4,1}    {7,4}
                      {6,1}             {7,2}  {6,3,1}    {8,3}
                      {4,2,1}           {8,1}  {7,2,1}    {9,2}
                                               {4,3,2,1}  {10,1}
                                                          {5,4,2}
                                                          {6,3,2}
                                                          {6,4,1}
                                                          {7,3,1}
                                                          {8,2,1}
                                                          {5,3,2,1}
		

Crossrefs

The strict complement is counted by A102627.
The non-strict version is ranked by A348551, complement A316413.
The non-strict version is counted by A349156, complement A067538.
For median instead of mean we have A360952, complement A359907.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A307683 counts partitions with non-integer median, ranks A359912.
A325347 counts partitions with integer median, ranks A359908.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A327472 counts partitions not containing their mean, complement of A237984.
A327475 counts subsets with integer mean.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, t) option remember; `if`(i*(i+1)/2Alois P. Heinz, Mar 16 2023
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!IntegerQ[Mean[#]]&]],{n,0,30}]

Extensions

a(31)-a(55) from Alois P. Heinz, Mar 16 2023

A361653 Number of even-length integer partitions of n with integer median.

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 5, 3, 11, 7, 17, 16, 32, 31, 52, 55, 90, 99, 144, 167, 236, 273, 371, 442, 587, 696, 901, 1078, 1379, 1651, 2074, 2489, 3102, 3707, 4571, 5467, 6692, 7982, 9696, 11543, 13949, 16563, 19891, 23572, 28185, 33299, 39640, 46737, 55418, 65164
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2023

Keywords

Comments

The median of an even-length multiset is the average of the two middle parts.
Because any odd-length partition has integer median, the odd-length version is counted by A027193, strict case A067659.

Examples

			The a(2) = 1 through a(9) = 7 partitions:
  (11)  .  (22)    (2111)  (33)      (2221)    (44)        (3222)
           (31)            (42)      (4111)    (53)        (4221)
           (1111)          (51)      (211111)  (62)        (4311)
                           (3111)              (71)        (6111)
                           (111111)            (2222)      (321111)
                                               (3221)      (411111)
                                               (3311)      (21111111)
                                               (5111)
                                               (221111)
                                               (311111)
                                               (11111111)
For example, the partition (4,3,1,1) has length 4 and median 2, so is counted under a(9).
		

Crossrefs

The odd-length version is counted by A027193, strict A067659.
Including odd-length partitions gives A307683, complement A325347.
For mean instead of median we have A361655, any length A067538.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median, mean A051293.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&IntegerQ[Median[#]]&]],{n,0,30}]

A360668 Numbers > 1 whose greatest prime index is not divisible by their number of prime factors (bigomega).

Original entry on oeis.org

4, 8, 10, 12, 15, 16, 18, 22, 24, 25, 27, 28, 32, 33, 34, 36, 40, 42, 44, 46, 48, 51, 54, 55, 60, 62, 63, 64, 66, 68, 69, 70, 72, 76, 77, 80, 81, 82, 85, 88, 90, 93, 94, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 115, 116, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers > 1 whose first differences of 0-prepended prime indices have non-integer mean.

Examples

			The prime indices of 1617 are {2,4,4,5}, and 5 is not divisible by 4, so 1617 is in the sequence.
		

Crossrefs

These partitions are counted by A200727.
The complement is A340610 (without 1), counted by A168659.
For median instead of mean we have A360557, counted by A360691.
Positions of terms > 1 in A360615 (numerator: A360614).
A058398 counts partitions by mean, see also A008284, A327482.
A067340 lists numbers whose prime signature has integer mean.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A334201 adds up all prime indices except the greatest.
A348551 = numbers w/ non-integer mean of prime indices, complement A316413.

Programs

  • Mathematica
    Select[Range[2,100],!Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

A360689 Number of integer partitions of n whose distinct parts have non-integer median.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 0 through a(9) = 13 partitions:
  .  .  (21)  (211)  (32)    (411)    (43)      (332)      (54)
                     (41)    (2211)   (52)      (611)      (63)
                     (221)   (21111)  (61)      (22211)    (72)
                     (2111)           (322)     (41111)    (81)
                                      (2221)    (221111)   (441)
                                      (4111)    (2111111)  (522)
                                      (22111)              (3222)
                                      (211111)             (6111)
                                                           (22221)
                                                           (222111)
                                                           (411111)
                                                           (2211111)
                                                           (21111111)
For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
		

Crossrefs

For not just distinct parts: A307683, complement A325347, ranks A359912.
These partitions have ranks A360551.
The complement is counted by A360686, strict A359907, ranks A360550.
For multiplicities instead of distinct parts we have A360690, ranks A360554.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
A360457 gives median of distinct prime indices (times 2).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}]
Previous Showing 31-37 of 37 results.